[ 1] 许洪波, 程学旗, 王斌, 等. 文本挖掘与机器学习[ J]. 信息技术快报, 2005, 3( 2) : 1- 14.
[ 2] Androutsopou los I, Paliouras G, M iche lakis E. Learning to F ilte rUnso licited Comm erc ia l E-M a il [ R] . Technical Report 2004 /2, NCSR / Dem okritos0, 2004.
[ 3] M cCa llum, Andrew Kach ites. Bow: A too lk it fo r statist-i cal languag e modeling, text retr ieva,l classification and c luste ring [ EB /OL ]. http: / /www. cs. cm u. edu /~ m ccallum /bow, 1996.
[ 4] Androutsopou los I, Koutsias J, Chandrinos K V, et al. An eva luation of naive bayesian ant-i spam filter ing [ C ] / / Potam ias G, M oustak is V, Som e ren Van M, et al. Proceed ing s of the Wo rkshop on M ach ine Learn ing in the N ew Inform ation Age. Barcelona: 11th European Conference onM ach ine Lea rn ing ( ECML 2000), 2000: 9 -17.
[ 5] Saham iM. Us ing M ach ine Lea rning to Im prove Inform ation Access [ EB /OL]. http: / / a.i stanford. edu /~ saham i/bio. htm l,1998.
[ 6] Saham iM, Dum a is S, H eckerman D, et al. A bayesian approach to filtering junk e-m a il[ C ] / / Saham iM ehran, CravenM ark, Joach im s Thorsten, et al. Lea rning fo rTex t Categor ization: Papers from the 1998W orkshop. [ s. .l ]: AAA I, 1998.
[ 7] Friedm an N, Ge ig erD, Go ldszm idtM. Bayesian netw ork c lassifiers [ J] . M ach ine Learn ing, 1997, 29: 131- 163