[ 1] Tung A K H, H an JW, Lakshm anan L V S, et a.l Constra int-based cluster ing in large databases[ C] / / Pro ceedings o f the 8th In ternational Conference on Database Theo ry. London: Spr ing er-Ve rlag, 2001: 405-419.
[ 2] W agstaff K. Inte lligent c luste ring w ith instance- leve l constra ints[ D]. Ithaca: Co rnellUn iversity, 2002.
[ 3] H an JW, M iche line K amber. Data M ining Concepts and Techn iques[M ]. 2nd ed. Be ijing: China M ach ine Press, 2006:444-446.
[ 4] The iler J, G isler G. A con tiguity-enhanced K-m eans c luster ing a lgo rithm for unsuperv ised mu ltispectra l im age segm entation
[ C ] / / Proceed ings of SPIE. Be llingham WA: SPIE, 1997, 3( 159): 108-118.
[ 5] Tung A, H ou J, H an JW. Spatial c lustering in the presence of obstac les[ C ] / / Proceed ings of the 17th Inte rnational Conference
on Da ta Eng ineer ing. W ashing ton, DC: IEEE Com puter Soc iety, 2001: 359-367.
[ 6] Estiv il-l Castro, V and Lee I J. AUTOCLUST+ : au tom atic c lustering of po int-data se ts in the presence o f obstacles[ C] / / Proceed
ing s of Int’ lW orkshop on Tem po ra,l Spatial and Spatio-Temporal DataM in ing, Lyon, France. London: Spr ing er-Ve rlag,2000: 133-146.
[ 7] Za iane O R, Lee C H. C lustering spatia l data w hen facing phy sica l constra ints[ C ] / / Proceed ings of the IEEE Inte rnational
Conf on Da taM ining, M aebashi C ity, Japan. W ash ing tion, DC: IEEE Computer Soc ie ty, 2002: 737-740.
[ 8] 杨杨, 孙志伟, 赵政. 一种处理障碍约束的基于密度的空间聚类算法[ J] . 计算机应用, 2007( 7): 1 688-1 691.
Yang Y ang, Sun Zh iw e,i Zhao Zheng. Density-based spatial cluster ingm ethod w ith obstacle constraints[ J]. ComputerApplications, 2007( 7): 1 688-1 691. ( in Chinese)
[ 9] X inW ang, Cam ilo Rostoker, H ow ard J H am ilton. Density-based spatia l c luster ing in the presence of obstac les and fac ilita tors
[ C ] / / Proceed ings of the 8 th European Conference on Pr inc iples and Practice o f Know ledg e D iscovery in Da tabases. NewYork: Springer-V erlag, 2004: 446-458.
[ 10] Zhang Xuep ing, W ang Jiayao, W u Fang, et a.l A nove l spatia l c lustering w ith obstac les constra ints based on gene tic algor
ithm s andK-m edo ids[ C] / / The 6th In ternational Con ference on Inte lligent System s Design and Applica tions. W ash ington,
DC: IEEE Compu ter Soc iety, 2006: 605-610.
[ 11] W agstaff K, Ca rd ie C. C luster ing w ith instance- level constra in ts[ C] / / Pro ceedings 17th Int’lConf onM achine learning. San
Franc isco: M org an Kau fm ann Publishers Inc, 2000: 1 103-1 110.
[ 12] Dav idson I, Rav i S S. C lustering w ith constra ints: feasibility issues and the K-m eans a lgo rithm [ C ] / / S IAM Inte rnational Conference on Da taM ining. Ph ilade lph ia: Soc iety fo r Industr ial and AppliedM athema tics, 2005: 138-149.
[ 13] W ag sta ff K, Cardie C. Constra ined K-m eans cluster ing w ith background know ledg e[ C] / / Proceedings of the 18 th Int1 Conf
onM achine Learn ing. San Franc isco: M o rgan Kaufm ann Publishers Inc, 2001: 577-584.
[ 14] Dan K le in, Sepandar D K, Ch ristopher D M. From instance- leve l constraints to space- leve l constra ints: m ak ing the most of
prio r know ledge in data c lustering [ C ] / / Proceedings of the 19th Int’ l Con f onM ach ine Learning. San Francisco: M organ Kau fm ann Pub lishers Inc, 2002: 307-314.
[ 15] 何振峰, 熊范纶. 结合限制的分隔模型及K-M eans算法[ J]. 软件学报, 2005, 16( 5): 799-809.
H e Zhenfeng, X iong Fanlun. A constra ined partition m ode l andK-means a lgo rithm [ J]. Journal of Softw are, 2005, 16( 5):
799-809. ( in Ch inese)
[ 16] 冯兴杰, 黄亚楼. 带约束条件的聚类算法研究[ J]. 计算机工程与应用, 2005( 7): 12-14, 169.
Feng X ing jie, H uang Ya lou. Research on the a lgo rithm o f the constra ined cluster ing[ J]. Com puter Eng ineer ing and App lications,2005( 7): 12-14, 169. ( in Chinese)
[ 17] Da i B iru, Lin Chengru, Chen M ing syan. Constrained data cluster ing by depth contro l and prog ressiv e constra int re laxation
[ J]. The VLDB Journa,l 2007, 16( 2): 201-217.
[ 18] Dav idsonI, Rav i S S. Agg lom era tive hierarchica l c lustering w ith constraints: theoretical and em pirical results[ C] / / Proceedings PKDD 2005. Berlin: Springer, 2005: 59-70.
[ 19] Basu S, Bane0ee A, M ooney R. Sem -i supe rv ised c lustering by seeding[ C] / / Proceed ings o f the 19th Intl Conf onM achine Learn ing. San Franc isco: M organ Kau fm ann Publishers Inc, 2002: 19-26