|Table of Contents|

Intelligent Subjective Evaluation of Virtual Road Load Data Accuracy Based on Random Forest(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2022年04期
Page:
45-54
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Intelligent Subjective Evaluation of Virtual Road Load Data Accuracy Based on Random Forest
Author(s):
Qiu Yu1Li Wenkui1Li Mian23
(1.Test & Validation Department,SAIC Motor Technical Center,Shanghai 201804,China)
(2.UM-SJTU Joint Institute,Shanghai Jiao Tong University,Shanghai 200240,China)
(3.School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
Keywords:
road load datamachine learningrandom foresttime series signalssubjective evaluation
PACS:
U467.4+97
DOI:
10.3969/j.issn.1672-1292.2022.04.006
Abstract:
Considering the limitations of current methods for virtual road load data evaluation,an intelligent subjective evaluation model of virtual road load data signals based on random forest is proposed. The objective statistical parameters of time history signals are taken as the inputs and the scores of subjective evaluations from experts as the output. The most important six objective statistical parameters are selected through feature importance ranking,which takes various features of the time history signals into a comprehensive consideration. The professional evaluation experiences from many experts are solidified into the model by training,and the fluctuations caused by human factors is avoided. The intelligent subjective evaluation model has high accuracy and good generalization,and it is proven a comprehensive,efficient and accurate intelligent tool for virtual time history signal evaluation for real-world applications.

References:

[1]邱宇,王磊,张皓清. 基于客户数据的混动车散热器热疲劳性能优化与认证[J]. 汽车零部件,2018(12):8-14.
[2]王灵龙,刘伟,李伟. 基于整车室内道路模拟的汽车零部件疲劳试验研究[J]. 汽车实用技术,2019(24):97-100.
[3]孙成智,段向雷,翁洋,等. 基于3D数字路面的整车耐久性能评价方法研究[J]. 汽车工程,2017,39(10):1211-1216.
[4]赵强,霍福祥,杨立峰,等. 发动机悬置支架多轴加载道路模拟试验方法研究[J]. 汽车文摘,2020(1):36-40.
[5]王长明,曹正林,彭亮,等. 虚拟试验载荷分析与试验验证研究[J]. 汽车技术,2016(8):43-47.
[6]左言言,张海峰,庄婷. 车内声品质主客观评价模型对比分析[J]. 江苏大学学报(自然科学版),2017,38(4):403-409.
[7]王添琪,马琼,李易. 整车防腐性能量化评价方法研究[J]. 汽车实用技术,2018(8):148-150.
[8]黄文杰,吕孟强,高鹏,等. 基于用户主观评价的车内气味调查研究[J]. 暖通空调,2020,50(4):14-20.
[9]毛东兴. 声品质研究与应用进展[J]. 声学技术,2007,26(1):159-164.
[10]柯蕙新,黄京华,沈浩. 调查研究中的统计分析法[M]. 北京:北京广播学院出版社,1992.
[11]DALIA V,ROSA E L,JUAN R. A Kendall correlation coefficient between functional data[J]. Advances in Data Analysis and Classification,2019,13(4):1083-1103.
[12]程琮,刘一志,王如德. Kendall协调系数W检验及其SPSS实现[J]. 泰山医学院学报,2010,31(7):487-490.
[13]AURÉLIEN G. Hands-On Machine Learning with Scikit-Learn and TensorFlow Concepts,Tools,and Techniques to Build Intelligent Systems[M]. Cambridge,USA:O'Reilly Media Inc,2017.
[14]奚杏杏,刘宇红,张荣芬. 基于网格搜索与交叉验证的SVR血压预测[J]. 计算机与现代化,2020(3):44-48.
[15]王兴玲,李占斌. 基于网格搜索的支持向量机核函数参数的确定[J]. 中国海洋大学学报(自然科学版),2005,35(5):859-862.
[16]彭漂. 基于随机森林的变量重要性度量和核密度估计算法研究[D]. 厦门:厦门大学,2017.
[17]BOULESTEIX A L,BENDER A,BERMEJO J L,et al. Random forest Gini importance favours SNPs with large minor allele frequency:impact,sources and recommendations[J]. Briefings in Bioinformatics,2012,13(3):292-304.

Memo

Memo:
-
Last Update: 2022-12-15