[1] PARK K J,JUNG D S. Boling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning[J]. Energy and buildings,2007,39(9):1 061-1 064.
[2] BI S S,SHI L,ZHANG L L. Application of nanoparticles in domestic refrigerators[J]. Applied thermal engineering,2008,28(14/15):1 834-1 843.
[3] 孙斌,钱铮. CuO/R141b纳米制冷剂在管内的流动沸腾传热特性[J]. 化工学报,2012,63(3):733-739.
SUN B,QIAN Z. Boiling heat transfer characteristics of nano-refrigerant CuO/R141b flowing in smooth tube[J]. Journal of chemical industry and engineering(China),2012,63(3):733-739. (in Chinese)
[4] 毕胜山,史琳. 纳米制冷剂TiO2/HFC134a水平管内流动沸腾换热实验研究[J]. 化工学报,2008,59(S2):104-108.
BI S S,SHI L. Flow boiling heat transfer of nano-refrigerant TiO2/HFC134a mixtures in a horizontal tube[J]. Journal of chemical industry and engineering(China),2008,59(S2):104-108. (in Chinese)
[5] 吴晓敏,李鹏,李辉,等. 添加有TiO2纳米颗粒的R11池沸腾换热研究[J]. 工程热物理学报,2008,29(1):124-126.
WU X M,LI P,LI H,et al. Investigation of pool boiling heat transfer of R11 with TiO2 nano-particles[J]. Journal of engineering thermophysics,2008,29(1):124-126. (in Chinese)
[6] 彭浩,丁国良,姜未汀,等. 纳米制冷剂管内流动沸腾换热特性[J]. 化工学报,2008,59(S2):70-75.
PENG H,DING G L,JIANG W T,et al. Heat transfer characteristics of nanorefrigerant flow boiling inside tube[J]. Journal of chemical industry and engineering(China),2008,59(S2):70-75. (in Chinese)
[7] 薛怀生,樊建人,胡亚才,等. 碳纳米管悬浮液在重力热管中的沸腾特性[J]. 化工学报,2006,57(11):2 562-2 567.
XUE H S,FAN J R,HU Y C,et al. Boiling characteristics of carbon nanotube suspension in gravity-assisted thermosyphon[J]. Journal of chemical industry and engineering(China),2006,57(11):2 562-2 567. (in Chinese)
[8] NARAYAN G P,ANOOP K B,DAS S K. Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes[J]. Journal of applied physics,2007,102(7):4 317.
[9] MCFADDEN P W,GRASSMANN P. The relation between bubble frequency and diameter during nucleate pool boiling[J]. International journal of heat and mass transfer,1962,5(3):169-173.
[10] BARTHAU G. Active nucleation site density and pool boiling heat transfer—an experimental study[J]. International journal of heat and mass transfer,1992,35(2):271-278.
[11] RINI D P,CHEN R H,CHOW L C. Bubble behavior and heat transfer mechanism in FC72 pool boiling[J]. Experimental heat transfer,2001,14(1):27-44.
[12] 刁彦华,赵耀华,王秋良. R-113池沸腾气泡行为的可视化及传热机理[J]. 化工学报,2005,56(2):227-234.
DIAO Y H,ZHAO Y H,WANG Q L. Bubble dynamics and heat transfer mechanism of pool boiling of R-113[J]. Journal of chemical industry and engineering(China) ,2005,56(2):227-234. (in Chinese)
[13] 唐潇,刁彦华,赵耀华,等. δ-Al2O3-R141b纳米流体的池内核态沸腾传热特性[J]. 化工学报,2012,63(1):64-70.
TANG X,DIAO Y H,ZHAO Y H,et al. Nucleate pool boiling heat transfer of δ-Al2O3-R141b nanofluid on horizontal plate[J]. Journal of chemical industry and engineering(China),2012,63(1):64-70. (in Chinese)
[14] 蔡艳华,马冬梅,王金刚,等. 纳米流体的制备及传热性能研究的现状[J]. 材料研究与应用,2007,1(4):274-276.
CAI Y H,MA D M,WANG J G,et al. Recent progress in the studies of preparation and heat-transfer properties of nanofluids[J]. Materials research and application,2007,1(4):274-276. (in Chinese)
[15] 吴金星,曹玉春,李泽,等. 纳米流体技术研究现状与应用前景[J]. 化工新型材料,2008,36(10):10-12.
WU J X,CAO Y C,LI Z,et al. Research acuaturality and application foreground of nanofluids technology[J]. New chemical materials,2008,36(10):10-12. (in Chinese)
[16] PENG H,DING D,HU H. Influences of refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling[J]. International journal of refrigeration,2011,34(8):1?823-1 826.
[17] 徐淼.纳米流体的热物性及在波壁管内流动特性研究[D]. 大连:大连理工大学,2010.
XU M. Research on thermophysical property of nanofluids and flow behavior in a wavy-walled tube[D]. Dalian:Dalian University of Technology,2010. (in Chinese)