|Table of Contents|

SPASER Properties of Active Silver Elliptical Nanotubes(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2016年02期
Page:
66-
Research Field:
材料工程
Publishing date:

Info

Title:
SPASER Properties of Active Silver Elliptical Nanotubes
Author(s):
Yu HaiqunWu Dajian
Faculty of Science,Jiangsu University,Zhenjiang 212013,China
Keywords:
SPASERsilver nanotubegain mediafinite element method
PACS:
O539
DOI:
10.3969/j.issn.1672-1292.2016.02.011
Abstract:
SPASER(Surface plasmon amplification by stimulated emission of radiation)properties of active silver elliptical nanotubes have been investigated by using the finite element method. When the angle θ between the excitation polarization and the long-axis of the ellipse is fixed at 0°,as the gain coefficient k increases to 0.281 8,a super-resonance can be observed at the wavelength of 639.3 nm in the active elliptical silver nanotube. Meanwhile,the maximal enhancement factor of surface enhanced Raman scattering can reach about 2.56×1018,which is high enough for the single molecule detection. As θ=90°,another super-resonance can be found in the active elliptical silver nanotube at the wavelength of 742.3 nm when the gain coefficient increases to 0.081 7. With decreasing the shell thickness,the gain threshold of the super-resonance of the silver elliptical nanotube with θ=0° decreases while the gain threshold increases for θ=90°. We have further found that when θ=45°,the two super-resonances can be observed in the active elliptical silver nanotube at two critical wavelengths with increasing the gain coefficient.

References:

[1] FONTANA J,RATNA B R. Highly tunable gold nanorod dimer resonances mediated through conductive junctions[J]. Appl Phys Lett,2014,105(1):011 107.
[2] SHIRZADITABAR F,SALIMINASAB M. Geometrical parameters effects on local electric field enhancement of silver-dielectric-silver multilayer nanoshell[J]. Phys Plasmas,2013,20(20):416-423.
[3] HUANG C J,YE J,WANG S,et al. Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection[J]. Appl Phys Lett,2012,100(17):173 114.
[4] WU D J,JIANG S M,CHENG Y,et al. Fano-like resonance in symmetry-broken gold nanotube dimer[J]. Opt Express,2012,20(24):26 559.
[5] YE F,BURNS M J,NAUGHTON M J. Structured metal thin film as an asymmetric color filter:the forward and reverse plasmonic halos[J]. Sci Rep-UK,2014(4):7 267.
[6] KELLY K L,CORONADO E,ZHAO L L,et al. The optical properties of nanoparticles:the influence of size,shape and dielectric environment[J]. J Phys Chem B,2003,107(3):668-677.
[7] FUTAMATA M,MARUYAMA Y,LSHIKAWA M. Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method[J]. J Phys Chem B,2003,107(31):7 607-7 617.
[8] FURINI L N,SANCHEZ C S,ISABEL L T,et al. Detection and quantitative analysis of carbendazim herbicide on Ag nanoparticles via surface-enhanced Raman scattering[J]. J Raman Spectrosc,2015,46(11):1 095-1 101.
[9] TRIPATHI L N,PRAVEENA M,VALSON P,et al. Long range emission enhancement and anisotropy in coupled quantum dots induced by aligned gold nanoantenna[J]. Appl Phys Lett,2014,105(16):163 106.
[10] VOLPATI D,SPADA E R,CID C C P,et al. Exploring copper nanostructures as highly uniform and reproducible substrates for plasmon-enhanced fluorescence[J]. Analyst,2014,140(2):476-482.
[11] BERGMAN D J,STOCKMAN M I. Surface plasmon amplification by stimulated emission of radiation:quantum generation of coherent surface plasmons in nanosystems[J]. Phys Rev Lett,2003,90:027 402.
[12] STOCKMAN M I. Spaser action,loss compensation,and stability in plasmonic systems with gain[J]. Phys Rev Lett,2011,106:156 802.
[13] PAN J,CHEN Z,CHEN J,et al. Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell[J]. Opt Lett,2012,37(1):1 181-1 183.
[14] LIU S Y,LI J F,ZHOU F,et al. Efficient surface plasmon amplification from gain-assisted gold nanorods[J]. Opt Lett,2011,36(7):1 296.
[15] DING P,CAI G W,WANG J Q,et al. Low-threshold resonance amplification of out-of-plane lattice plasmons in active plasmonic nanoparticle arrays[J]. J Optics-UK,2014,16(6):065 003.
[16] WU D J,CHEN Y,WU X W,et al. An active metallic nanomatryushka with two similar super-resonances[J]. J Appl Phys,2014,116(1):013 502.
[17] LI Z Y,XIA Y N. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering[J]. Nano Lett,2010,10(1):243-249.
[18] NOGINOV M A,ZHU G,BELGRAVE A M,et al. Demonstration of a spaser-based nanolaser[J]. Nature,2009,460(7 259):1 110-1 112.
[19] BAI J,TOWE E. Unified model for analysis of light amplification in rare-earth doped fibers[J]. J Opt Soc Am B,2014,31(11):2 809-2 816.
[20] PLUM E,FEDOTOV V A,KUO P,et al. Towards the lasing spaser:controlling metamaterial optical response with semiconductor quantum dots[J]. Opt Express,2009,17(17):8 548-8 551.
[21] VASILEIOS S,STAMATIOS A,NIKOLAOS K,et al. Modal analysis of graphene microtubes utilizing a two-dimensional vectorial finite element method[J]. Appl Phys A,2016,122(4):1-7.
[22] GORMAN T,HAXHA S. Design and optimisation of integrated hybrid surface plasmon biosensor[J]. Opt Commun,2014,325:175-178.
[23] BOHERMAN C F,HUFFMAN D R. Absorption and scattering of light by small particles[M]. New York:Wiley,1983
[24] ZHELUDEV N I,PROSVIRNIN S L,PAPASIMAKIS N,et al. Lasing spaser[J]. Nat Photonics,2008,2(6):351-354.
[25] STOCKMAN M I. Spaser as nanoscale quantum generator and ultrafast amplifier[J]. J Optics-UK,2010,12:024 004.
[26] TAO Y F,GUO Z Y,SUN Y X,et al. Silver sphere nanoshells coated gain-assisted ellipsoidal silica core for low-threshold surface plasmon amplification[J]. Opt Commun,2015,355:580-585.
[27] NIE S M,EMERY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science,1997,275:1 102-1 106.
[28] ZHANG H P,ZHOU J,ZOU W B,et al. Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser[J]. J Appl Phys,2012,112(7):074 309.

Memo

Memo:
-
Last Update: 2016-06-30