[1] FONTANA J,RATNA B R. Highly tunable gold nanorod dimer resonances mediated through conductive junctions[J]. Appl Phys Lett,2014,105(1):011 107.
[2] SHIRZADITABAR F,SALIMINASAB M. Geometrical parameters effects on local electric field enhancement of silver-dielectric-silver multilayer nanoshell[J]. Phys Plasmas,2013,20(20):416-423.
[3] HUANG C J,YE J,WANG S,et al. Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection[J]. Appl Phys Lett,2012,100(17):173 114.
[4] WU D J,JIANG S M,CHENG Y,et al. Fano-like resonance in symmetry-broken gold nanotube dimer[J]. Opt Express,2012,20(24):26 559.
[5] YE F,BURNS M J,NAUGHTON M J. Structured metal thin film as an asymmetric color filter:the forward and reverse plasmonic halos[J]. Sci Rep-UK,2014(4):7 267.
[6] KELLY K L,CORONADO E,ZHAO L L,et al. The optical properties of nanoparticles:the influence of size,shape and dielectric environment[J]. J Phys Chem B,2003,107(3):668-677.
[7] FUTAMATA M,MARUYAMA Y,LSHIKAWA M. Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method[J]. J Phys Chem B,2003,107(31):7 607-7 617.
[8] FURINI L N,SANCHEZ C S,ISABEL L T,et al. Detection and quantitative analysis of carbendazim herbicide on Ag nanoparticles via surface-enhanced Raman scattering[J]. J Raman Spectrosc,2015,46(11):1 095-1 101.
[9] TRIPATHI L N,PRAVEENA M,VALSON P,et al. Long range emission enhancement and anisotropy in coupled quantum dots induced by aligned gold nanoantenna[J]. Appl Phys Lett,2014,105(16):163 106.
[10] VOLPATI D,SPADA E R,CID C C P,et al. Exploring copper nanostructures as highly uniform and reproducible substrates for plasmon-enhanced fluorescence[J]. Analyst,2014,140(2):476-482.
[11] BERGMAN D J,STOCKMAN M I. Surface plasmon amplification by stimulated emission of radiation:quantum generation of coherent surface plasmons in nanosystems[J]. Phys Rev Lett,2003,90:027 402.
[12] STOCKMAN M I. Spaser action,loss compensation,and stability in plasmonic systems with gain[J]. Phys Rev Lett,2011,106:156 802.
[13] PAN J,CHEN Z,CHEN J,et al. Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell[J]. Opt Lett,2012,37(1):1 181-1 183.
[14] LIU S Y,LI J F,ZHOU F,et al. Efficient surface plasmon amplification from gain-assisted gold nanorods[J]. Opt Lett,2011,36(7):1 296.
[15] DING P,CAI G W,WANG J Q,et al. Low-threshold resonance amplification of out-of-plane lattice plasmons in active plasmonic nanoparticle arrays[J]. J Optics-UK,2014,16(6):065 003.
[16] WU D J,CHEN Y,WU X W,et al. An active metallic nanomatryushka with two similar super-resonances[J]. J Appl Phys,2014,116(1):013 502.
[17] LI Z Y,XIA Y N. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering[J]. Nano Lett,2010,10(1):243-249.
[18] NOGINOV M A,ZHU G,BELGRAVE A M,et al. Demonstration of a spaser-based nanolaser[J]. Nature,2009,460(7 259):1 110-1 112.
[19] BAI J,TOWE E. Unified model for analysis of light amplification in rare-earth doped fibers[J]. J Opt Soc Am B,2014,31(11):2 809-2 816.
[20] PLUM E,FEDOTOV V A,KUO P,et al. Towards the lasing spaser:controlling metamaterial optical response with semiconductor quantum dots[J]. Opt Express,2009,17(17):8 548-8 551.
[21] VASILEIOS S,STAMATIOS A,NIKOLAOS K,et al. Modal analysis of graphene microtubes utilizing a two-dimensional vectorial finite element method[J]. Appl Phys A,2016,122(4):1-7.
[22] GORMAN T,HAXHA S. Design and optimisation of integrated hybrid surface plasmon biosensor[J]. Opt Commun,2014,325:175-178.
[23] BOHERMAN C F,HUFFMAN D R. Absorption and scattering of light by small particles[M]. New York:Wiley,1983
[24] ZHELUDEV N I,PROSVIRNIN S L,PAPASIMAKIS N,et al. Lasing spaser[J]. Nat Photonics,2008,2(6):351-354.
[25] STOCKMAN M I. Spaser as nanoscale quantum generator and ultrafast amplifier[J]. J Optics-UK,2010,12:024 004.
[26] TAO Y F,GUO Z Y,SUN Y X,et al. Silver sphere nanoshells coated gain-assisted ellipsoidal silica core for low-threshold surface plasmon amplification[J]. Opt Commun,2015,355:580-585.
[27] NIE S M,EMERY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science,1997,275:1 102-1 106.
[28] ZHANG H P,ZHOU J,ZOU W B,et al. Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser[J]. J Appl Phys,2012,112(7):074 309.