|Table of Contents|

Visualized Pool Boiling Experiment of Nano Cu/R11(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2016年02期
Page:
60-
Research Field:
能源与动力工程
Publishing date:

Info

Title:
Visualized Pool Boiling Experiment of Nano Cu/R11
Author(s):
Wang LiliLi QiheZhao XiaobaoZhu LinZhang hanLu JieYu Hao
School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210042,China
Keywords:
nano-particlesevaporationnucleate boilingnano concentrationbubbletemperature differencevaporization
PACS:
TB657.5
DOI:
10.3969/j.issn.1672-1292.2016.02.010
Abstract:
In order to study the effect of nano-particles on the whole performance of the refrigerants,a set of observable experimental equipments are designed to conduct a visual comparative research into the nucleate boiling phenomena with freon(R11)and nano Cu-R11 as working fluid. Using the camera technology,the process of boiling and vaporization of the working fluid,as well as the growth and zooming process of the nucleate boiling are clearly observed. As the experimental result shows,the heat transfer performance of R11 is enhanced by the addition of Nano-Cu particles. Otherwise,the heat transfer performance of the working fluid can be strengthened as the addition concentration of nano(0.05%~1%)and the temperature difference between hot and cold source(15 ℃~30 ℃)become larger. Meanwhile,the research studies verify the fact that the character of heat transfer enhancement of Nano-Cu/R11 becomes more significant in smaller temperature difference conditions,which provides a reference to the subsequent experimental study on the flow of the evaporator section of thermosyphon and heat-transfer mechanism.

References:

[1] PARK K J,JUNG D S. Boling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning[J]. Energy and buildings,2007,39(9):1 061-1 064.
[2] BI S S,SHI L,ZHANG L L. Application of nanoparticles in domestic refrigerators[J]. Applied thermal engineering,2008,28(14/15):1 834-1 843.
[3] 孙斌,钱铮. CuO/R141b纳米制冷剂在管内的流动沸腾传热特性[J]. 化工学报,2012,63(3):733-739.
SUN B,QIAN Z. Boiling heat transfer characteristics of nano-refrigerant CuO/R141b flowing in smooth tube[J]. Journal of chemical industry and engineering(China),2012,63(3):733-739. (in Chinese)
[4] 毕胜山,史琳. 纳米制冷剂TiO2/HFC134a水平管内流动沸腾换热实验研究[J]. 化工学报,2008,59(S2):104-108.
BI S S,SHI L. Flow boiling heat transfer of nano-refrigerant TiO2/HFC134a mixtures in a horizontal tube[J]. Journal of chemical industry and engineering(China),2008,59(S2):104-108. (in Chinese)
[5] 吴晓敏,李鹏,李辉,等. 添加有TiO2纳米颗粒的R11池沸腾换热研究[J]. 工程热物理学报,2008,29(1):124-126.
WU X M,LI P,LI H,et al. Investigation of pool boiling heat transfer of R11 with TiO2 nano-particles[J]. Journal of engineering thermophysics,2008,29(1):124-126. (in Chinese)
[6] 彭浩,丁国良,姜未汀,等. 纳米制冷剂管内流动沸腾换热特性[J]. 化工学报,2008,59(S2):70-75.
PENG H,DING G L,JIANG W T,et al. Heat transfer characteristics of nanorefrigerant flow boiling inside tube[J]. Journal of chemical industry and engineering(China),2008,59(S2):70-75. (in Chinese)
[7] 薛怀生,樊建人,胡亚才,等. 碳纳米管悬浮液在重力热管中的沸腾特性[J]. 化工学报,2006,57(11):2 562-2 567.
XUE H S,FAN J R,HU Y C,et al. Boiling characteristics of carbon nanotube suspension in gravity-assisted thermosyphon[J]. Journal of chemical industry and engineering(China),2006,57(11):2 562-2 567. (in Chinese)
[8] NARAYAN G P,ANOOP K B,DAS S K. Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes[J]. Journal of applied physics,2007,102(7):4 317.
[9] MCFADDEN P W,GRASSMANN P. The relation between bubble frequency and diameter during nucleate pool boiling[J]. International journal of heat and mass transfer,1962,5(3):169-173.
[10] BARTHAU G. Active nucleation site density and pool boiling heat transfer—an experimental study[J]. International journal of heat and mass transfer,1992,35(2):271-278.
[11] RINI D P,CHEN R H,CHOW L C. Bubble behavior and heat transfer mechanism in FC72 pool boiling[J]. Experimental heat transfer,2001,14(1):27-44.
[12] 刁彦华,赵耀华,王秋良. R-113池沸腾气泡行为的可视化及传热机理[J]. 化工学报,2005,56(2):227-234.
DIAO Y H,ZHAO Y H,WANG Q L. Bubble dynamics and heat transfer mechanism of pool boiling of R-113[J]. Journal of chemical industry and engineering(China) ,2005,56(2):227-234. (in Chinese)
[13] 唐潇,刁彦华,赵耀华,等. δ-Al2O3-R141b纳米流体的池内核态沸腾传热特性[J]. 化工学报,2012,63(1):64-70.
TANG X,DIAO Y H,ZHAO Y H,et al. Nucleate pool boiling heat transfer of δ-Al2O3-R141b nanofluid on horizontal plate[J]. Journal of chemical industry and engineering(China),2012,63(1):64-70. (in Chinese)
[14] 蔡艳华,马冬梅,王金刚,等. 纳米流体的制备及传热性能研究的现状[J]. 材料研究与应用,2007,1(4):274-276.
CAI Y H,MA D M,WANG J G,et al. Recent progress in the studies of preparation and heat-transfer properties of nanofluids[J]. Materials research and application,2007,1(4):274-276. (in Chinese)
[15] 吴金星,曹玉春,李泽,等. 纳米流体技术研究现状与应用前景[J]. 化工新型材料,2008,36(10):10-12.
WU J X,CAO Y C,LI Z,et al. Research acuaturality and application foreground of nanofluids technology[J]. New chemical materials,2008,36(10):10-12. (in Chinese)
[16] PENG H,DING D,HU H. Influences of refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling[J]. International journal of refrigeration,2011,34(8):1?823-1 826.
[17] 徐淼.纳米流体的热物性及在波壁管内流动特性研究[D]. 大连:大连理工大学,2010.
XU M. Research on thermophysical property of nanofluids and flow behavior in a wavy-walled tube[D]. Dalian:Dalian University of Technology,2010. (in Chinese)

Memo

Memo:
-
Last Update: 2016-06-30