|Table of Contents|

Application of Subgridding Algorithm to Two-DimensionalLaguerre-FDTD Method(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2016年02期
Page:
73-
Research Field:
计算机工程
Publishing date:

Info

Title:
Application of Subgridding Algorithm to Two-DimensionalLaguerre-FDTD Method
Author(s):
Liu Yingying1Nie Shouping1Liu Sheng2Zhuang Wei13Tang Wanchun1
(1.School of Physical and Technology,Nanjing Normal University,Nanjing 210023,China)(2.School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)(3.Jiangsu Center for Collaborative Innovation in Geogr
Keywords:
Laguerre-FDTDsubgridding techniqueelectromagnetic calculation
PACS:
TM15
DOI:
10.3969/j.issn.1672-1292.2016.02.012
Abstract:
A subgridding algorithm in the two-dimensional Laguerre finite-difference time-domain(2-D Laguerre-FDTD)technique is presented in this paper. The homogeneous travelling wave equation is applied to calculate the tangential electric fields at the interface. The subgridding technique for Laguerre-FDTD method is used to deal with temporal variables analytically by choosing weighted Laguerre polynomials as basis functions and Galerkin’s method,which is an unconditional stable method. Numerical results for fine structures are presented to demonstrate the accuracy and efficiency of the proposed method.

References:

[1] NAMIKI T. A new FDTD algorithm based on alternating-direction implicit method[J]. IEEE transaction on microwave theory and techniques,1999,47(10):2 003-2 007.
[2] ZHEN F,CHEN Z,ZHANG J. Toward the development of a three-dimensional unconditionally stable finite-difference time domain method[J]. IEEE transaction on microwave theory and techniques,2000,48(9):1 550-1 558.
[3] SUN G,TRUEMAN C W. Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell’s equations[J]. Electronics letters,2003,39(7):595-597.
[4] ZHENG F,CHEN Z. Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method[J]. IEEE transaction on microwave theory and techniques,2001,49(5):1 006-1 009.
[5] PEREDA J,GARCIA O,VEGAS A,et al. Numerical dispersion and stability analysis of the FDTD technique in lossy dielectrics[J]. IEEE microwave and guided wave letters,1998,8(7):245-247.
[6] CHUNG Y S,SARKAR T K,JUNG B H,et al. An unconditionally stable scheme for the finite-difference time-domain method[J]. IEEE transactions on microwave theory & techniques,2003,51(3):697-704.
[7] HE G Q,SHAO W,WANG X H,et al. An efficient domain decomposition laguerre-FDTD method for two-dimensional scattering problems[J]. IEEE transactions on antennas & propagation,2013,61(5):2 639-2 645.
[8] 葛德彪,阎玉波. 电磁波时域有限差分方法[M]. 3版. 西安:西安电子科技大学出版社,2011:29-32.
GE D B,YAN Y B. The electromagnetic time domain finite difference method[M]. 3rd. Xi’an:Xi’an Electronic and Science University of Publishing House,2005. (in Chinese)
[9] 董永绵,柴玫,葛德彪,等. 二维FDTD亚网格技术[J]. 运城高专学报,2000,18(6):7-9.
DONG Y M,CAI M,GE D B. Two-dimensional subgridding algorithm in FDTD method[J]. Journal of Yuncheng advanced training college,2000,18(6):7-9. (in Chinese)
[10] ZIVANOVIC S S,YEE K S,MEI K K. A subgridding method for the time-domain finite-difference method to solve Maxwell’s equations[J]. IEEE transactions on microwave theory & techniques,1991,39(3):471-479.
[11] PRESCOTT D T,SHULEY N V. A method for incorporating different sized cells into the finite-difference time-domain analysis technique[J]. Microwave & guided wave letters IEEE,1992,2(11):434-436.
[12] 祝懿. 孔缝耦合与三维亚网格技术研究[D]. 成都:西南交通大学,2005.
ZHU Y. The study on slot coupling and three-dimensional subgridding method[D]. Chengdu:Southwest Jiaotong University,2005. (in Chinese)
[13] 谢姣. 时域有限差分方法亚网格技术的研究[D]. 南京:南京航空航天大学,2010.
XIE J. Research on subgrid techonology for FDTD[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2010. (in Chinese)
[14] 李政. 基于时域有限差分方法的亚网格技术研究与应用[D]. 南京:南京邮电大学,2014.
ZHENG L. Research and application of the subgrid technology based on FDTD method[D]. Nanjing:Nanjing University of Posts and Telecommunications,2014. (in Chinese)
[15] DIAMANTI N,GIANNOPOULOS A. Implementation of ADI-FDTD subgrids in ground penetrating radar FDTD models[J]. Journal of applied geophysics,2009,67(4):309-317.
[16] YANG S,YU Y,CHEN Z,et al. A subgridding scheme using hybrid one-step leapfrog ADI-FDTD and FDTD methods[C]. Montreal:IEEE,2012.
[17] 耿瑄,徐金平. R-FDTD与亚网格相结合技术及其应用[J]. 东南大学学报(自然科学版),2004,34(2):161-165.
GENG X,XU J P. Reduced finite-difference time-domain method with subgridding and its application[J]. Journal of southeast university(natural science edition),2004,34(2):161-165. (in Chinese)
[18] SHAO W,WANG B Z,LIU X F. Second-order absorbing boundary conditions for marching-on-in-order scheme[J]. IEEE microwave & wireless components letters,2006,16(5):308-310.
[19] CAI Z,CHEN B,LIU Y,et al. Complex frequency shifted(CFS)PML for the WLP-FDTD method[J]. Digital printing,2011:787-790.
[20] CHEVALIER M W,LUEBBERS R J. FDTD local grid with material traverse[J]. IEEE transactions on antennas & propagation,1997,45(3):411-421.
[21] YU W,MITTRA R. A new subgridding method for the finite-difference time-domain(FDTD)algorithm[J]. Microwave & optical technology letters,1999,21(5):330-333.
[22] DIAMANTI N,GIANNOPOULOS A. Employing ADI-FDTD subgrids for GPR numerical modelling and their application to study ring separation in brick masonry arch bridges[J]. Near surface geophysics,2011,9(3):245-256.

Memo

Memo:
-
Last Update: 2016-06-30