|Table of Contents|

Monitor and System Development of Road Transportation Public Opinion(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2021年04期
Page:
33-39
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Monitor and System Development of Road Transportation Public Opinion
Author(s):
Tang Lihua1Wu Xingyu2Xu Huajian2Zhu Yanxiang3Diao Yemin4Wu Jiansheng1
(1.School of Geographic and Biological Information,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)(2.School of Communications and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)(3.VeriMake Research Laboratory,Nanjing Renmian Integrated Circuit Technology Co.,Ltd.,Nanjing 210088,China)(4.TP Laboratory,Nanjing TriangularPlus Culture Development Centre,Nanjing 210005,China)
Keywords:
road transportationpublic opinion monitorsentiment analysislong short-term memorymonitor system
PACS:
TP181
DOI:
10.3969/j.issn.1672-1292.2021.04.006
Abstract:
This paper presents a case study of Jiangsu Province,whose road transportation related network text data is collected. Firstly,its public opinion is monitored and analyzed from three different perspectives: quarterly,annual and major events,thus the hot public opinion and sentiment tendency can be extracted. Based on the Long Short-Term Memory network,a novel method on road transportation public opinion sentiment analysis is then designed,and it is able to achieve good performance with the accuracy,precision,recall and AUC of 96.1%,84.2%,88.9% and 0.904,respectively. Finally,a road transportation public opinion monitoring system is developed,which can exhibit the WordCloud graph and analyze sentiment tendency of public opinion,thus providing valuable references to the road transportation management department.

References:

[1] YUAN C X,LIN H,ZHANG X,et al. OPO:Online public opinion analysis system over text streams[C]//2017 International Conference on Service Systems and Service Management. Dalian,China:IEEE,2017:1-6.
[2]MIKOLOV T,CHEN K,CORRADO G,et al. Efficient estimation of word representations in vector space[J/OL]. Computer Science,2013 [2021-09-18]. https://arxiv.org/abs/1301.3781v/.
[3]ZHANG L,WANG S,LIU B. Deep learning for sentiment analysis:a survey[J]. WIREs Data Mining and Knowledge Discovery,2018,8(4):e1253.
[4]GO A,BHAYANI R,HUANG L. Twitter Sentiment Classification using Distant Supervision,CS224N Project Report[R]. Stanford:Stanford University,2009.
[5]MUKHERJEE S,BHATTACHARYYA P. Feature specific sentiment analysis for product reviews[C]//Proceedings of the 13th International Conference on Computational Linguistics and Intelligent Text Processing. New Delhi,India:Springer-Verlag,2012.
[6]KAUR S,SIKKA G,AWASTHI L K. Sentiment analysis approach based on N-gram and KNN classifier[C]//2018 First International Conference on Secure Cyber Computing and Communications(ICSCCC). Jalandhar,India:IEEE,2018.
[7]RATHOR A S,AGARWAL A,DIMRI P. Comparative study of machine learning approaches for amazon reviews[J]. Procedia Computer Science,2018,132:1552-1561.
[8]钟佳娃,刘巍,王思丽,等. 文本情感分析方法及应用综述[J]. 数据分析与知识发现,2021,5(6):1-13.
[9]ZENG J F,MA X,ZHOU K. Enhancing attention-based LSTM with position context for aspect-level sentiment classification[J]. IEEE Access,2019,7:20462-20471.
[10]HEIKAL M,TORKI M,EL-MAKKY N. Sentiment analysis of arabic tweets using deep learning[J]. Procedia Computer Science,2018,142:114-122.
[11]DU C,HUANG L. Sentiment analysis with piecewise convolution neural network[J]. Computer Engineering and Science,2017,39(1):173-179.
[12]冯兴杰,张志伟,史金钏. 基于卷积神经网络和注意力模型的文本情感分析[J]. 计算机应用研究,2018,35(5):1434-1436.
[13]CAO J P,ZENG K,WANG H,et al. Web-based traffic sentiment analysis:methods and applications[J]. IEEE Transactions on Intelligent Transportation Systems,2014,15(2):844-853.
[14]ARDIC O,ANNEMA J A,MOLIN E,et al. The media influence on public opinion about a Dutch road pricing policy proposal[C]//93th Annual Meeting of the Transportation Research Board. Washington DC,USA:TRB,2014.
[15]CAO D L,WANG S R,LIN D Z. Chinese microblog users’ sentiment-based traffic condition analysis[J]. Soft Computing,2018,22(21):7005-7014.
[16]LU H,SHI K Z,ZHU Y F,et al. Sensing urban transportation events from multi-channel social signals with the Word2vec fusion model[J]. Sensors,2018,18(12):4093.
[17]何梦娇,吴戈,梁华,等. 基于多源文本挖掘的城市交通舆情分析——以苏州为例[J]. 交通信息与安全,2018,36(3):105-111.
[18]ALI F,KWAK D,KHAN P,et al. Transportation sentiment analysis using word embedding and ontology-based topic modeling[J]. Knowledge-Based Systems,2019,174:27-42.
[19]冒婷婷,孙新红,汤育春,等. 基于情感挖掘的基础设施社会韧性评价研究[J]. 广西城镇建设,2021(2):27-32.
[20]滕靖,刘韶杰,龚越,等. 交通事件网络舆情分析方法[J]. 交通信息与安全,2019,37(6):139-148.

Memo

Memo:
-
Last Update: 2021-12-15