|Table of Contents|

Design and Analysis of Adaptive Wheel Power Generation Platform for Wheel Rail Type Vertical Axis Wind Turbine(PDF)

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2023年02期
Page:
1-7
Research Field:
机械工程
Publishing date:

Info

Title:
Design and Analysis of Adaptive Wheel Power Generation Platform for Wheel Rail Type Vertical Axis Wind Turbine
Author(s):
Zhou Yang1Li Chao12Li Guolin1
(1.Zhongbei College,Nanjing Normal University,Danyang 212332,China)
(2.School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210023,China)
Keywords:
Magnus effectwheel rail type vertical axis wind turbinewheel power generation platformadaptive steeringanti-overturning devicefinite element strength analysis
PACS:
TH122; TH128
DOI:
10.3969/j.issn.1672-1292.2023.02.001
Abstract:
Compared with horizontal axis wind turbine,vertical axis wind turbine has many advantages.Based on the working principle of wheel rail vertical axis wind turbine,the overall structure design is carried out.Wheel power generation platform is an important part of wheel rail type vertical axis wind power,which mainly plays the role of power generation and steering.A distributed wheel power generation platform structure is designed,in which the wheel directly drives each small generator,so that the wheel driving the generator to rotate is always on the same swing platform with the generator.The wheel generator platform can rotate adaptively with the change of the curvature of the running track,and has the advantage that the mechanical rotation energy of each generator can be input smoothly.The anti-overturning device is designed to be installed on the bottom plate of the trolley,which can adjust the effective clearance between the device and the track to ensure that the wind turbine will not overturn during the operation.The static strength analysis of the key parts of the bogie is carried out by using the finite element technology to verify that the designed structure meets the strength requirements.

References:

[1]BROWN K A,BROOKS R. Design and analysis of vertical axis thermoplastic composite wind turbine blade[J]. Plastics,Rubber and Composites,2010,39(3/4/5):111-121.
[2]PARASCHIVOIU I. Wind turbine design with emphasis on darrieus concept[M]. Shanghai:Shanghai Scientific and Technical Publishers,2002.
[3]王学文. 一种Magnus水平轴风力机的设计与实验[D]. 哈尔滨:哈尔滨工业大学,2013:1-3.
[4]宋奇. 基于马格纳斯效应的轮轨式风力机的结构设计和三维模拟[D]. 南京:南京师范大学,2020:2-4.
[5]汪辉. 基于Magnus效应的共水平轴海流涡轮机的性能研究[D]. 北京:华北电力大学,2018:10.
[6]SPERA D A. Wind turbine technology:Fundamental concepts of wind turbine engineering[M]. New York:ASME Press,1994.
[7]SENGUPTA T K,TALLA S B. Robins-Magnus effect:a continuing saga[J]. Current Science,2004,86(7):1033-1036.
[8]刘宸宇. 基于马格纳斯效应的轮轨式风力机关键技术研究[D]. 南京:南京师范大学,2019:9-11.
[9]孙瑛. 垂直轴柱状叶片风力机的研究[D]. 哈尔滨:哈尔滨工业大学,2011:42-49.
[10]宋奇,李超,刘宸宇. 垂直轴风力机中马格纳斯效应力最大化与叶片转速的研究[J]. 南京师范大学学报(工程技术版),2019,19(1):65-71.
[11]唐新姿,陆鑫宇,王效禹,等. 低雷诺数条件下马格努斯翼型气动性能数值分析与优化研究[J]. 太阳能学报,2021,42(6):265-271.
[12]刘宸宇,李超. 马格纳斯力驱动的轮轨式风力发电机研究[J]. 南京师范大学学报(工程技术版),2018,18(1):41-46.
[13]江文强,墨泽. 横向载荷作用下螺栓连接松动过程仿真研究[J]. 计算机仿真,2021,38(7):385-390.
[14]濮良贵,纪名刚. 机械设计[M]. 8版. 北京:高等教育出版社,2006:68-70.
[15]许京荆. ANSYS Workbench 结构分析与实例详解[M]. 北京:人民邮电出版社,2019:255-287.
[16]闻邦椿. 机械设计手册[M]. 5版. 北京:机械工业出版社,2010:5-17.
[17]俞科斌,李郝林,陈吉勇. 圆盘剪刀轴有限元分析及优化设计[J]. 上海理工大学学报,2014,36(1):39-43.
[18]刘鸿文,林建兴,曹满玲. 材料力学[M]. 北京:高等教育出版社,2020:255-260.

Memo

Memo:
-
Last Update: 2023-06-15