[1]赵瑾,申忠宇.化工过程智能故障诊断技术方法论的研究[J].南京师范大学学报(工程技术版),2004,04(03):018-22.
 ZHAO Jin,SHEN Zhongyu.Study of Technique Method for Chemical Process Intelligent Fault Diagnosis[J].Journal of Nanjing Normal University(Engineering and Technology),2004,04(03):018-22.
点击复制

化工过程智能故障诊断技术方法论的研究
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
04卷
期数:
2004年03期
页码:
018-22
栏目:
出版日期:
2004-09-30

文章信息/Info

Title:
Study of Technique Method for Chemical Process Intelligent Fault Diagnosis
作者:
赵瑾申忠宇
南京师范大学控制科学与工程系, 江苏南京210042
Author(s):
ZHAO Jin SHEN Zhongyu
Department of Control Science and Engineering, Nanjing Normal University, Nanjing 210042, China
关键词:
化工过程 智能故障诊断技术 多学科 技术策略
Keywords:
chemical process intelligent fault diagnosis technique mult-i subject technical strategy
分类号:
TP277
摘要:
动态系统故障诊断是解决现代化工业系统可靠性和安全性必不可少的关键技术之一 .简要地讨论化工过程智能故障诊断技术的发展状况和趋势后 ,根据化工过程智能故障诊断技术的特点 ,系统地对化工过程智能故障诊断技术的多学科特点以及技术策略方法进行研究 ,强调其科学性、集成性、应用性以及渗透性 ,将分析与综合、定性与定量、假设与验证相结合等基本思维方法应用到化工过程智能故障诊断中 ,形成化工过程智能故障诊断技术的方法论
Abstract:
One of the key techniques for solving the problem in reliability and safety of modern industries is fault diagnosis in dynamic systems. The paper briefly discusses the development and trend of intelligent fault diagnosis technologies in chemical processes, systematically studies the mult-i subject characteristics and technical strateg ies about the intelligent fault diagnosis technique in chemical processes, with its science, integration, application and penetrability emphasized, and applies the basic thinking methods involving analysis and synthesis, qualitative analysis and quantitative analysis, hypothesis and verification so that the chemical process intelligent fault diagnosis technique can be devised.

参考文献/References:

[ 1] Venkatasubramanian V, Rengaswamy R, Kewen Yin, et al. A review of process fault detection and diagnosis part I: Quantitative mode-l based methods[ J] . Computer & Chemical Eng ineering, 2003, 27( 3) : 293 -311.
[ 2] Venkatasubramanian V, Rengaswamy R, Kewen Yin, et al. A review of process fault detection and diagnosis part II: Qualitative models and search strateg ies [ J] . Computer & Chemical Engineering, 2003, 27( 3) : 313- 326.
[ 3] Venkatasubramanian V, Rengaswamy R, Kewen Yin, et al. A review of process fault detection and diagnosis part III: Process history based methods[ J] . Computer & Chemical Eng-i neering , 2003, 27( 3) : 327- 346.
[ 4] Frank P M, Ding S X, Marcu T. Mode-l based fault diagnosis in technical processes [ J] . Transactions of the Institute of Measurement and Control, 2000, 22( 1) : 57- 101.
[ 5] Mehra R K, Peschon J. An innovation approach to fault detection and diagnosis in dynamics [ J] . Automatica, 1971, 7 ( 5) : 637 -611.
[ 6] Willsky A S. A survey of design methods for failure detection in dynamic systems[ J] . Automatica, 1976, 12( 6) : 601- 611.
[ 7] 陈玉东, 施颂椒, 翁正新. 动态系统的故障诊断方法综述[ J] . 化工自动化及仪表, 2001, 28( 3) : 1- 14.
[ 8] 黄启明, 钱宇, 林伟璐, 等. 化工过程故障诊断研究进展[ J] . 化工自动化及仪表, 2000, 27( 3) : 1- 5.
[ 9] Sharif M A, Grosvenor R I. Process plant condition monitoring and fault diagnosis[ J] . Proc Instn Mech Engrs Part E, 1998, 212( 1) : 13- 30.
[ 10] Fathi Z, Ramirez W F, Korbicz J. Analytical and know-l edge- based redundancy[ J] . AICHE. Journal, 1993, 39( 1) : 42 -56.
[ 11] Bhagwat A, Srinivasan R, Krishnaswamy P R. Fault detection during process transitions: a mode-l based approach[ J] . Chemical Engineering Science, 2003, 58( 2) : 309- 325.
[ 12] 李华生, 袁一. 化工过程故障预测、诊断和补偿专家系统FEDCS 的开发[ J] . 北京化工大学学报( 自然科学版) , 1995, 22( 1) : 6- 11.
[ 13] 孙京诰, 杨欣斌, 黄道. 基于知识共享和重用的化工过程故障诊断技术研究[ J] . 华东理工大学学报( 增刊) , 2002, 28( 9) : 34- 37.
[ 14] 钱宇, 李秀喜, 江燕斌, 等. 化工过程集成型智能故障诊断系统研究与开发[ J] . 华南理工大学学报( 自然科学版) , 2002, 30( 11) : 142- 146.
[ 15] 黄志坚, 裘丽华. 对现代机械故障诊断技术方法论的探讨[ J] . 科学技术与辨证法, 2001, 18( 3) : 26- 29.
[ 16] Venkatasubramanian V, Chan K. A Neural Network Methodology for Process Fault Diagnosis[ J] . AICHE. Journal, 1989, 35( 12) : 970- 984.
[ 17] 王文辉, 周东华. 基于定性和半定性方法的故障检测与诊断技术[ J] . 控制理论与应用, 2002, 19( 5) : 653- 665, 659.

备注/Memo

备注/Memo:
作者简介: 赵瑾(1961- ) , 女, 博士研究生, 副教授, 主要从事控制理论与动态系统的故障诊断技术以及智能化, 网络化控制装置的应用等方面的研究. E-mail: zhaojin@njnu. edu. cn
更新日期/Last Update: 2013-04-29