[1]陈春玲,商子豪.基于AdaBoost和概率神经网络的入侵检测算法[J].南京师范大学学报(工程技术版),2008,08(04):021-24.
 Chen Chunling,Shang Zihao.Algorithm of Network Intrusion Detection Based on AdaBoost and PNN[J].Journal of Nanjing Normal University(Engineering and Technology),2008,08(04):021-24.
点击复制

基于AdaBoost和概率神经网络的入侵检测算法
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
08卷
期数:
2008年04期
页码:
021-24
栏目:
出版日期:
2008-12-30

文章信息/Info

Title:
Algorithm of Network Intrusion Detection Based on AdaBoost and PNN
作者:
陈春玲;商子豪;
南京邮电大学计算机学院, 江苏南京210003
Author(s):
Chen ChunlingShang Zihao
College of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
入侵检测 概率神经网络 AdaBoost ABPNN
Keywords:
intrusion de tection probab ilistic neura l netw ork( PNN) AdaBoost ABPNN
分类号:
TP393.08
摘要:
将AdaBoost算法和概率神经网络结合,提出了一种新的概率神经网络模型ABPNN,基于此模型提出一种新的入侵检测算法.该算法对接收到的网络数据进行分析判断,实现入侵方式的自动分类,并且能对新的入侵行为进行分类和记忆.实验证明该算法在入侵检测系统的检测率和误报率方面都有优越的性能表现.
Abstract:
By com bining AdaBoost a lgo rithm w ith probabilistic neural netwo rk ( PNN) , a new probab ilistic neura l ne-t w ork ( ABPNN) m ode l is proposed. Based on th is mode,l a new in trusion detection a lgo rithm is suggested. This algorithm ana ly zes and estim ates the network data rece ived, rea lizes the acctom atic sorting of intrusion m ethods, and at the sam e tim e sorts and m em orizes new types o f intrusion m ethods. Exper iments show that the propo sed algor ithm can g et better perform ance in detection rate and a larm rate.

参考文献/References:

[ 1] Va liant L G. A theory of learnable[ J]. Commun ica tion o f ACM, 1984, 27( 11): 1 134-1 142.
[ 2] Schapire R E. The strength of w eak learnab ility [ J]. M achine Learn ing, 1990, 5( 2) : 197-227.
[ 3] Zaknich A. In troduction to themod ified probab ilistic neural netwo rk for gene ra l s igna l pro cessing app lications[ J]. IEEE Transactions on S igna l Processing, 1998, 46( 7): 1 980-1 990.
[ 4] Freund Y, Schap ire R. Expe rim en ts w ith a new boosting algor ithm [ C ] / / Sa itta L. Proc o f the 13th Int. 1 Conf onM achine Learning. Austin: M organ Kanfm ann, 1996: 148-156.
[ 5] Liu B, H suW, M a Y. Prun ing and summ ar izing the d iscove red assoc ia tions[ Z] . KDD- 99, 1999.
[ 6] 刘道群. 基于遗传神经网络的入侵检测模型的研究[ D]. 重庆: 重庆大学, 2005.
Liu Daoqun. S tudy o f IDS model based on genetic neura l network[ D]. Chongq ing: Chongqing Un iversity, 2005. ( in Chinese)
[ 7] Jackson D A, Yong C. Robust pr inc ipal component analysis and outlier detection w ith eco log ical data[ J]. Env ironm etr ics,2004, 15( 2): 129-139.

相似文献/References:

[1]郑苗苗,吉根林.一种处理混合型属性的无监督异常入侵检测方法[J].南京师范大学学报(工程技术版),2008,08(02):068.
 Zheng Miaomiao,Ji Genlin.An Unsupervised Anomaly Intrusion Detection for the Mixed Attributes[J].Journal of Nanjing Normal University(Engineering and Technology),2008,08(04):068.
[2]邱玉祥,杨明.一种基于混合差别矩阵的属性约简算法及其在入侵检测中的应用[J].南京师范大学学报(工程技术版),2008,08(03):071.
 Qiu Yuxiang,Yang Ming.An Algorithm for Attribute Reduction in Rough Set and its Application in Intrusion Detection[J].Journal of Nanjing Normal University(Engineering and Technology),2008,08(04):071.
[3]褚红燕,沈世斌.基于概率模型算法的设备运行状态分析[J].南京师范大学学报(工程技术版),2005,05(04):034.
 CHU Hongyan,SHEN Shibin.Analysis of Equipment Running Condition Based on the Probabilistic Model Arithmetic[J].Journal of Nanjing Normal University(Engineering and Technology),2005,05(04):034.

备注/Memo

备注/Memo:
基金项目: 国家“863”计划( 2006AA01Z219)资助项目.
通讯联系人: 陈春玲, 副教授, 研究方向: 软件技术及其在通信中的应用. E-m ail:clchen@ n jup t. edu. cn
更新日期/Last Update: 2013-04-24