[1]徐 鹏,王 雷,张文义.遗传算法求解VRP的种群初始化改进[J].南京师范大学学报(工程技术版),2009,09(03):070-74.
 Xu Peng,Wang Lei,et al.Improvement on Population Initialization of Genetic Algorithm Solution for VRP[J].Journal of Nanjing Normal University(Engineering and Technology),2009,09(03):070-74.
点击复制

遗传算法求解VRP的种群初始化改进
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
09卷
期数:
2009年03期
页码:
070-74
栏目:
出版日期:
2009-09-30

文章信息/Info

Title:
Improvement on Population Initialization of Genetic Algorithm Solution for VRP
作者:
徐 鹏1 2 王 雷1 张文义1
1. 河海大学交通学院, 江苏南京210098;
2. 河海大学海岸灾害及防护教育部重点实验室, 江苏南京210098
Author(s):
Xu Peng12Wang Lei1Zhang Wenyi1
1.College of Traffic,Hohai University,Nanjing 210098,China;2.Key Laboratory of Coastal Disaster and Defence,Hohai University,Nanjing 210098,China
关键词:
VRP 初始种群 遗传编码 遗传算法 改进遗传算法
Keywords:
VRP initial popu la tion genetic coding genetic a lgo rithm improved genetic algor ithm
分类号:
TP18
摘要:
传统的遗传算法求解VRP时,初始种群多半采取随机生成法形成染色体方案,以致于迭代开始就可能形成许多不可行的方案,要进行大量的计算后才能得到优化的方案,这在很大程度上降低了算法的运算效率.论文提出的遗传编码策略,对初始种群给予基于知识型启发策略,使得初始种群一开始就表现为一种较优的状态.
Abstract:
W hen trad itiona l Genetic A lgor ithms( GA ) w as applied in VRP, mo st of the in itia l population genera te the chrom osom e prog ram by tak ing a random m ethod, which leads to a lo t o f infeasib le schem es in the beg inning, and a g reat dea l o f ca lculations be fore obta ining an optim ize one. Th is reduced the ca lcu lating effic iency o f the a lgor ithm to the g reat extent. The g enetic cod ing strategy, propo sed by the pape r, g iv es in itia l population a know ledge-based heuristic strategy, w hich m akes in itial popu la tion a better perfo rmance at the very start.

参考文献/References:

[ 1] H o lland JH. Adaptation in Nature and Artific ia l System s[M ]. Cam bridge: M IT Press, 1992.
[ 2] Go ldbe rg D E. Gene tic A lgo rithm s in Search[ C ] / / Optim ization andM ach ine Learn ing. Add ison-W esley, 1989: 37-40.
[ 3] Law rence S, M ohammad A. Param etric exper im enta tion w ith a gene tic a lgo rithm ic configura tion for so lving the veh ic le routing
prob lem [ C ] / / Proceed ings-Annua lM eeting o f the Decision Sciences Institute. Dec is Sci Inst, 1996: 488-490.
[ 4] 张玉俐, 樊建华, 徐建刚, 等. 车辆路径问题的改进遗传算法研究[ J]. 天津理工大学学报, 2006, 22( 5): 79-82.
Zhang Yul,i Fan Jianhua, Xu Jiangang, e t a.l Improved g enetic a lgo rithm research for veh icle routing prob lem [ J]. Journa l o f
T ian jin Un iversity o fT echno logy, 2006, 22( 5): 79-82. ( in Ch inese)
[ 5] 李军, 谢秉磊, 郭耀煌. 非满载车辆调度问题的遗传算法[ J] . 系统工程理论方法应用, 2000, 9( 3): 235-239.
Li Jun, X ie B ing le,i Guo Yaohuang. Genetic a lgor ithm fo r veh icle scheduling prob lem w ith non-fu l load[ J]. System s Eng-i
neering-Theo ryM e thodo logy App lications, 2000, 9( 3): 235-239. ( in Ch inese)
[ 6] 汪祖柱, 程家兴, 方宏兵, 等. 车辆路径问题的混合优化算法[ J]. 运筹与管理, 2004, 13( 6): 48-52.
W ang Zuzhu, Cheng Jiax ing, Fang H ongb ing, et a.l An hybr id optim iza tion a lgor ithm so lv ing vehicle routing prob lem s[ J].
Operations Research andM anagem ent Science, 2004, 13( 6): 48-52. ( in Ch inese)

备注/Memo

备注/Memo:
基金项目: 河海大学自然科学基金( 2008429911 )资助项目.
通讯联系人: 徐 鹏, 博士研究生, 讲师, 研究方向: 智能交通系统、物流系统优化. E-mail:rob inxp@ sina. com
更新日期/Last Update: 2013-04-23