[1]倪睿,袁静,王琪,等.基于有限元分析的棒球最佳击球点问题[J].南京师范大学学报(工程技术版),2010,10(03):035-39.
 Ni Rui,Yuan Jing,Wang Qi,et al.Analysis of the Sweet Zone on a Bat Based on the Finite Element Model[J].Journal of Nanjing Normal University(Engineering and Technology),2010,10(03):035-39.
点击复制

基于有限元分析的棒球最佳击球点问题
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
10卷
期数:
2010年03期
页码:
035-39
栏目:
出版日期:
2010-03-01

文章信息/Info

Title:
Analysis of the Sweet Zone on a Bat Based on the Finite Element Model
作者:
倪睿1 袁静1 王琪1 尹静2 庄建军1
1. 南京大学电子科学与工程学院, 江苏南京210093; 2. 上海建桥学院信息技术系, 上海201319
Author(s):
Ni Rui1Yuan Jing1Wang Qi1Yin Jing2Zhuang Jianjun1
1.Department of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China;2.Department of Information Technology,Shanghai Jianqiao College,Shanghai 201319,China
关键词:
棒球棒 最佳击球点 梁振动模型 振动节点 有限元分析
Keywords:
baseba ll ba t sweet zone beam v ibration model vibra tion node fin ite elem ent ana lysis
分类号:
O325
摘要:
针对棒球运动中的球棒最佳击球点问题,首先以梁振动模型为基础,研究了两端自由均匀杆振动能量的传递,得到了振动能量损失最小的受力区域.接着运用有限元分析法,将不规则的棒球棒模型细化为752个规则三角形进行受力分析,结合振动方程和边界条件,求出前3种振动模式下的振动节点,将振动能量损失最小的击球区域定位于基波节点与二次谐波节点之间.研究结果表明,以标准棒球棒(81.3 cm)为例,其最佳击球区域为:62.4~70.8 cm,该结论为棒球运动员选择最佳击球区域提供了可靠的理论依据.
Abstract:
In sea rch o f the optima l hit reg ion in a runn ing baseball bat, based on the beam vibra tion m ode,l th is paper analyzes the energy transm iss ion of the v ib ration for a un iform beam and obta ins the zonewhere there is least energy loss. In sea rch o f the optima l hit reg ion in a runn ing baseball bat, based on the beam vibra tion m ode,l th is paper analyzes the energy transm iss ion of the v ib ration for a un iform beam and obta ins the zonewhere there is least energy loss. Then the finite e lem ent analysis is app lied in wh ich the irregu la rly shaped bat is m eshed into 752 regular triangles to be analyzed, and the v ibration equa tion toge therw ith boundary conditions is used to calcu la te its first three v ibration nodes. Fina lly, the sw ee t zone is determ ined, wh ich is located betw een the base w ave and the second o rder ha rmon ic nodes. Taking the standard ized baseba ll ba t ( 81. 3 cm ) for an examp le, the swee t zone rang es from 62. 4 cm to 70. 8 cm from the thinne r end, which prov ides a theoretica l foundation for baseba ll play ers to choose an optim a l h itting reg ion and get a desirable e ffect.

参考文献/References:

[ 1] 申兵辉, 祁铮. 棒球中的物理学[ J]. 现代物理知识, 1995, 9( 6): 1-8. Shen B inghu,i Q i Zhen. Phys ics in baseba ll[ J]. M odern Physics, 1995, 9( 6) : 1-8. ( in Chinese)
[ 2] 闵行, 诸文俊. 材料力学[M ]. 西安: 西安交通大学出版社, 2009: 113-131. M ing H ang, ZhuW en jun. M echanics o fM ate rials[M ]. Xi’an: X i’an Jiaotong University Press, 2009: 113-131. ( in Chi?? nese)
[ 3] A lanM Nathana. Dynam ics of the baseba ll?? ba t collision[ J]. Am J Phys, 2000, 68( 11): 3-10.
[ 4] Rod Cross. The swee t spo t of a baseball bat[ J]. Am J Phys, 2006, 66( 9): 56-62.
[ 5] 赵阳, UDPA Lalita, UDPA Sa tish. 电磁场有限元分析的快速数值方法研究[ J]. 南京师范大学学报: 工程技术版, 2006, 6( 4): 1-4. Zhao Yang. UDPA La lita, UDPA Satish. finite e lement ana lys is o f fast num er ica lm ethods[ J]. Journa l o fNanjing Norm a lUni?? ve rsity: Eng ineer ing and Techno logy Ed ition, 2006, 6( 4): 1-4.
[ 6] 王琼. 有限元计算前后期处理控件的设计与开发[ J] . 南京师范大学学报: 工程技术版, 2003, 3( 2) : 71-74. W ang Q iong. Fin ite elem ent post??process ing before the des ign and deve lopm ent contro l[ J]. Journal of Nanjing Norm a lUn iver?? sity: Eng ineering and Techno logy Edition, 2003, 3( 2) : 71-74. ( in Ch inese)
[ 7] Ka ttan P I. MATLAB有限元分析与应用[M ]. 北京: 清华大学出版社, 2004: 150-175. Ka ttan P I. F in ite E lem ent Analysis and App lications[M ] . Beijing: Tsinghua Un iversity Press, 2004: 150-175. ( in Ch inese)
[ 8] H ow ard Brody. M odels o f baseba ll ba ts[ J]. Am J Phys, 2007, 58( 8): 45-52.
[ 9] M a rtin P A. W aves in wood[ J].W aveM otion, 2004, 40( 19) : 387-398.
[ 10] Rod C ross. Center of percussion o f hand??he ld im plem ents[ J]. Am J PhysM ay, 2004, 72( 5): 622-630.

备注/Memo

备注/Memo:
通讯联系人: 庄建军, 博士, 讲师, 研究方向: 信号与信息处理、自动控制. Email:zhuangjeff@ 163. com
更新日期/Last Update: 2013-04-02