[1]李应林,黄虎.温差热发电技术及其应用[J].南京师范大学学报(工程技术版),2011,11(03):023-30.
 Li Yinglin,Huang Hu.Thermal Power Generation Technology and its Application[J].Journal of Nanjing Normal University(Engineering and Technology),2011,11(03):023-30.
点击复制

温差热发电技术及其应用
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
11卷
期数:
2011年03期
页码:
023-30
栏目:
出版日期:
2011-11-30

文章信息/Info

Title:
Thermal Power Generation Technology and its Application
作者:
李应林;黄虎;
南京师范大学能源与机械工程学院,江苏南京210042
Author(s):
Li YinglinHuang Hu
School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210042,China
关键词:
热发电太阳能余热回收可再生能源
Keywords:
thermal power generationsolar energywaste heat recoveryrenewable energy
分类号:
TN377;TM61
摘要:
温差热发电作为一种利用工业余热、废热、太阳能、地热能、海洋能等能源,通过循环工质驱动透平发电的技术,兼有不消耗煤炭、燃油等紧缺能源,低排放,节能环保等一系列优点.在阐述了温差热发电技术原理的同时探讨了温差热发电循环系统以及循环工质的研究进展,从太阳能、地热能、海洋能以及工业余热废热等角度出发,介绍了温差热发电技术的应用.
Abstract:
Thermal power generation,as a technology to utilize industrial waste heat,solar energy,geothermal energy and ocean energy,drives the turbine to generate electricity by the working fluid. And the thermal power generation has a series of advantages,such as non-consumption of coal and fuel,low emission,energy saving and environmental protection. Furthermore,the principle of thermal power generation is expounded,and at the same time,the research progress of circulatory system and the prospect of working fluids are explored. Finally,from the view of solar energy,geothermal energy,ocean energy,industrial waste heat and other heat source,the application of thermal power generation is described.

参考文献/References:

[1]Kim N J,Kim C N,Chun W. Using the condenser effluent from a nuclear power plant for ocean thermal energy conversion [J]. International Communications in Heat and Mass Transfer,2009,36( 10) : 1 008-1 013.
[2]Dipippo R. Ideal thermal efficiency for geothermal binary plants[J]. Geothermics,2007,36( 3) : 276-285.
[3]Borsukiewicz G A,Nowak W,Stachel A A. Improvement of ecological efficiency of power plant operation by substitution of a single component plant with a binary one[J]. Polish Journal of Environmental Studies,2007,16( 3B) : 43-48.
[4]Ozgener L,Hepbasli A,Ibrahim D. Thermo-mechanical energy analysis of balcova geothermal district heating system in izmir, turkey[J]. Journal of Energy Resources Technology,2004,126( 4) : 293-301.
[5]Borsukiewicz G A. Dual-fluid-hybrid power plant co-powered by low-temperature geothermal water[J]. Geothermics,2010,39 ( 2) : 170-176.
[6]Bruhn M. Hybrid geothermal-fossil electricity generation from low enthalpy geothermal resources: geothermal feed water preheating in conventional power plants[J]. Energy,2002,27( 4) : 329-346.
[7]Borsukiewicz G A,Nowak W. Comparative analysis of natural and synthetic refrigerants in application to low temperature clausius— rankine cycle[J]. Energy,2007,32( 4) : 344-352.
[8]Saleh B,Koglbauer G,Wendland M,et al. Working fluids for lowtemperature organic Rankine cycles[J]. Energy,2007,32 ( 7) : 1 210-1 221.
[9]Hettiarachchi H D M,Golubovic M,Worek W M,et al. Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources[J]. Energy,2007,32( 9) : 1 698-1 706.
[10]Michaelides E E,Scott G J. Binary-flashing geothermal power plant[J]. Energy,1984,9( 4) : 323-331.
[11]Nowak W,Stachel A A,Borsukiewicz G A. Influence of evaporation temperature and organic fluid properties in the lower cycle of binary power plant on its efficiency and power[J]. Archives of Thermodynamics,2006,27( 4) : 1-10.
[12]王辉涛,王华. 海洋温差发电有机朗肯循环工质选择[J]. 海洋工程,2009,27( 2) : 119-124. Wang Huitao,Wang Hua. Selection of working fluids for ocean thermal energy conversion power generation organic Rankine cycle[J]. Ocean Engineering,2009,27( 2) : 119-124. ( in Chinese)
[13]Alessandro F,Marco V. Optimal design of binary cycle power plants for water-dominated,medium-temperature geothermal fields[J]. Geothermics,2009,38( 4) : 379-391.
[14]Tarlecki J,Lior N,Zhang N. Analysis of thermal cycles and working fluids for power generation in space[J]. Energy Conversion and Management,2007,48( 11) : 2 864-2 878.
[15]Nakaoka T,Uehara H. Performance test of a shell-and-tube plate type evaporator for OTEC[J]. Experimental Thermal and Fluid Science,1988,1( 3) : 283-291.
[16]Nakaoka T,Uehara H. Performance test of a shell-and-tube plate type condenser for OTEC[J]. Experimental Thermal and Fluid Science,1988,1( 3) : 275-281.
[17]李伟,赵镇南,王迅,等. 海洋温差能发电技术的现状与前景[J]. 海洋工程,2004,22( 2) : 105-108. Li Wei,Zhao Zhennan,Wang Xun,et al. Current situation and prospects of oceanic thermal energy conversion[J]. Ocean Engineering,2004,22( 2) : 105-108. ( in Chinese)
[18]Tanner D. Ocean thermal energy conversion: current overview and future outlook[J]. Renewable Energy,1995,6 ( 3) : 367-373.
[19]Vaivudh S,Rakwichian W,Chindaruksa S. Heat transfer of high thermal energy storage with heat exchanger for solar trough power plant[J]. Energy Conversion and Management,2008,49( 11) : 3 311-3 317.
[20]Gupta M K,Kaushik S C. Exergy analysis and investigation for various feed water heaters of direct steam generation solarthermal power plant[J]. Renewable Energy,2010,35( 6) : 1 228-1 235.
[21]Montes M J. Thermofluidynamic model and comparative analysis of parabolic trough collectors using oil,water /steam or molten salt as heat transfer fluids[C]/ / Proceedings of 14th International SolarPACES Symposium on Solar Thermal Concentrating Technologies,Las Vegas: 2008.
[22]Benz N. Advances in receiver technology for parabolic troughs[C]/ / Proceedings of 14th International SolarPACES Symposium on Solar Thermal Concentrating Technologies,Las Vegas: 2008.
[23]Eck M. Direct steam generation in parabolic troughs at 500℃-A German—Spanish project targeted on component development and system design[C]/ / Proceedings of 14th International Solar PACES Symposium on Solar Thermal Concentrating Technologies, Las Vegas: 2008.
[24]Zarza E. Almería GDV: the first solar power plant with direct stem generation[C]/ / Proceedings of 14th International Solar PACES Symposium on Solar Thermal Concentrating Technologies,Las Vegas: 2008.
[25]Poullikkas A. Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean regiona case study for the island of Cyprus[J]. Renewable and Sustainable Energy Reviews,2009,13( 9) : 2 474-2 484.
[26]Montes M J,Abanades A,Martinez-Val J M,et al. Solar multiple optimization for a solar-only thermal power plant,using oil as heat transfer fluid in the parabolic trough collectors[J]. Solar Energy,2009,83( 12) : 2 165-2 176.
[27]Ravi K K,Reddy K S. Thermal analysis of solar parabolic trough with porous disc receiver[J]. Applied Energy,2009,86 ( 9) : 1 804-1 812.
[28]Mancini T,Heller P,Butler B,et al. Dish-stirling systems: an overview of development and status[J]. Journal of Solar Energy Engineering,2003,125( 2) : 135-151.
[29]Karabulut H,Yucesu H S,Cinar C,et al. An experimental study on the development of a b-type Stirling engine for low and moderate temperature heat sources[J]. Applied Energy,2009,86( 1) : 68-73.
[30]Sandia. Stirling energy systems set new world record for solar-to-grid conversion efficiency[EB/OL]. http: / /www. newswise.com/articles /view/537732 /? sc = swhn.
[31]Di B F,Gwiazda J. A novel thermally induced draft air power generation system for very tall,man-made and natural geophysical phenomenon[C]/ / AMSE Joint Power Conference,Scarsdale: Arizona. 2002.
[32]Di B F,Gwiazda J. A new concept for a thermal air power tube used with concentrated solar energy power generation in openpi tmines and large natural geo-physical phenomenon[C]/ / ASME Joint Power Conference,Atlanta: 2003.
[33]Francis A,Di B F,Gwiazda J. A new concept for integrating a thermal air power tube with solar energy and alternative,waste heat energy sources and large natural or man-made,geo-physical phenomenon[J]. Renewable Energy,2005,30 ( 2 ) : 131-143.
[34]Hu E,Yang Y P,Nishimura A,et al. Solar thermal aided power generation[J]. Applied Energy,2010,87 ( 9 ) : 2 881-2 885.
[35]Wu S Y,Xiao L,Cao Y D. A parabolic dish /AMTEC solar thermal power system and its performance evaluation[J]. Applied Energy,2010,87( 2) : 452-462.
[36]Pak P S,Suzuki Y A. CO2-recovering non-polluting high-efficiency gas-turbine power generation system utilizing saturated steam as its working gas[J]. Electrical Engineering in Japan,1994,114( 3) : 86-97.
[37]Pak P S,Hatikawa T,Suzuki Y. A hybrid power generation system utilizing solar thermal energy with CO2 recovery based on oxygen combustion method[J]. Energy Conversion Management,1995,36( 6 /9) : 823-826.
[38]Pak P S,Kosugi T,Suzuki Y. Characteristics and economics evaluation of a CO2-capturing solar thermal hybrid power generation system with heat storage[J]. Electrical Engineering in Japan,1999,126( 4) : 21-29.
[39]Kosugi T,Pak P S. Economic evaluation of solar thermal hybrid H2O turbine power generation systems[J]. Energy,2003,28( 3) : 185-198.
[40]Gou C H,Cai R X,Hong H. A novel hybrid oxy-fuel power cycle utilizing solar thermal energy[J]. Energy,2007,32( 9) : 1 707-1 714.
[41]Gil A,Medrano M,Martorell I,et al. State of the art on high temperature thermal energy storage for power generation: Part 1-Concepts,materials and modellization[J]. Renewable and Sustainable Energy Reviews,2010,14( 1) : 31-55.
[42]Medrano M,Gil A,Martorell I,et al. State of the art on high-temperature thermal energy storage for power generation: part 2-Case studies[J]. Renewable and Sustainable Energy Reviews,2010,14( 1) : 56-72.
[43]Hoshi A,Mills D R,Bittar A,et al. Screening of high melting point phase change materials ( PCM) in solar thermal concentrating technology based on CLFR[J]. Solar Energy,2005,79( 3) : 332-339.
[44]Zhang Y P,Jiang Y. A simple method,the T-history method,of determining the heat fusion,specific heat and thermal conductivity of phase change materials[J]. Measurement Science and Technology,1999,10( 3) : 201-205.
[45]Hong H,Jin H G,Ji J,et al. Solar thermal power cycle with integration of methanol decomposition and middle-temperature solar thermal energy[J]. Solar Energy,2005,78( 1) : 49-58.
[46]王迅,李赫,谷琳. 海水温差能发电的经济和环保效益[J]. 海洋科学,2008,32( 11) : 84-87. Wang Xun,Li He,Gu Lin. Economic and environmental benefits of ocean thermal energy conversion[J]. Marine Sciences, 2008,32( 11) : 84-87. ( in Chinese)
[47]Heydt G T. An assessment of ocean thermal energy conversion as an advanced electric generation methodology[J]. Proceedings of the IEEE,1993,81( 3) : 409-418.
[48]Claude G. Power from the tropical seas[J]. Mechanical Engineering,1930,52( 12) : 1 039-1 044.
[49]Moore F P,Martin L L. A nonlinear nonconvex minimum total heat transfer area formulation for ocean thermal energy conversion ( OTEC) systems[J]. Applied Thermal Engineering,2008,28( 8 /9) : 1 015-1 021.
[50]Lennard D E. The viability and best locations for ocean thermal energy conversion systems around the world[J]. Oceanographic Literature Review,1996,43( 1) : 88-88.
[51]Robert F,Cicchetti G J,Jonathan C D,et al. Ocean thermal energy conversion ( OTEC) system[J]. Renewable Energy, 1997,11( 2) : 276-290.
[52]Uehara H. The present status and future of ocean thermal energy conversion[J]. Energy and Resources,2002,23 ( 2) : 129-132.
[53]Uehara H. The present status and future of development of OTEC[J]. Cogeneration in Japan,2004,19( 2) : 43-51.
[54]Abraham R,Jayashankar V,Ikegami Y,et al. Analysis of power cycle for 1 MW floating OTEC plant[C]/ / Proceedings of International OTEC/DOWA,Imari Japan: 1999.
[55]Paul J T S,Wilfried G J. A new hybrid ocean thermal energy conversion—offshore solar pond ( OTEC—OSP) design: A cost optimization approach[J]. Solar Energy,2008,82( 6) : 520-527.
[56]王迅,谷琳,李赫. 海水温差能发电系统两种循环方式的比较研究[J]. 海洋技术,2006,25( 2) : 34-38. Wang Xun,Gu Lin,Li He. Comparative research of two cycle modes in ocean thermal conversion systems[J]. Ocean Technology, 2006,25( 2) : 34-38. ( in Chinese)
[57]Kazim A. Hydrogen production through an ocean thermal energy conversion system operating at an optimum temperature drop [J]. Applied Thermal Engineering,2005,25( 14 /15) : 2 236-2 246.
[58]Yamada N,Hoshi A,Ikegami A. Performance simulation of solar-boosted ocean thermal energy conversion plant[J]. Renewable Energy,2009,34( 7) : 1 752-1 758.
[59]吕太,高学伟,李楠. 地热发电技术及存在的技术难题[J]. 沈阳工程学院学报: 自然科学版,2009,5( 1) : 5-9. Lü Tai,Gao Xuewei,Li Nan. The geothermal power technology and technical problems[J]. Journal of Shenyang Institute of Engineering: Natural Science Edition,2009,5( 1) : 5-9. ( in Chinese)
[60]李志茂,朱彤. 世界地热发电现状[J]. 太阳能,2007( 8) : 10-14. Li Zhimao,Zhu Tong. Status of world geothermal power generation[J]. Solar Energy,2007( 8) : 10-14. ( in Chinese)
[61]高学伟,李楠,康慧. 地热发电技术的发展现状[J]. 电力勘测设计,2008( 3) : 59-62. Gao Xuewei,Li Nan,Kang Hui. The development status of geothermal power technology[J]. Electric Power Survery and Design, 2008( 3) : 59-62. ( in Chinese)
[62]张丽英,翟辉,代彦军,等. 一种地热与太阳能联合发电系统研究[J]. 太阳能学报,2008,29( 9) : 1 086-1 091. Zhang Liying,Zhai Hui,Dai Yanjun,et al. Study on a geothermal-solar power generation system[J]. Acta Energiae Solaris Sinica,2008,29( 9) : 1 086-1 091. ( in Chinese)
[63]Imrozsohel M,Sellier M,Brackney L J,et al. Efficiency improvement for geothermal power generation to meet summer peak demand[J]. Energy Policy,2009,37( 9) : 3 370-3 376.[64]Sener A C,Aksoy N. A general view on geothermal power economy[C]/ / Proceedings of the Geothermal Energy Seminar on Electricity Production from Geothermal Energy Teskon,Izmir,Turkey: 2007.
[65]Adelina P D,Efstathios E M. Geothermal power production from abandoned oil wells[J]. Energy,2009,34( 7) : 866-872.
[66]Borsukiewicz G A,Nowak W. Maximising the working fluid flow as a way of increasing power output of geothermal power plant[J]. Applied Thermal Engineering,2007,27( 11 /12) : 2 074-2 078.
[67]Ozgener L,Hepbasli A,Ibrahim D. Thermo-mechanical exergy analysis of balcova geothermal district heating system in izmir, Turkey[J]. Journal of Energy Resources Technology,2004,126( 4) : 293-301.
[68]Kanoglu M,Bolatturk A. Performance and parametric investigation of a binary geothermal power plant by exergy[J]. Renewable Energy,2008,33( 11) : 2 366-2 374.
[69]Ozcan N Y,Gokcen G. Thermodynamic assessment of gas removal systems for single-flash geothermal power plants[J]. Applied Thermal Engineering,2009,29( 14 /15) : 3 246-3 253.
[70]Yodovard P,Khedari J,Hirunlabh J. The potential of waste heat thermoelectric power generation from diesel cycle and gas turbine cogeneration plants[J]. Energy Sources,2001,23( 3) : 213-224.
[71]Kinoshita T,Inoue T,Iwao K,et al. A spatial evaluation of forest biomass usage using GIS[J]. Applied Energy,2008,86 ( 1) : 1-8.
[72]Kinoshita T,Ohki T,Yamagata Y. Woody biomass supply potential for thermal power plants in Japan[J]. Applied Energy, 2010,87( 9) : 2 923-2 927.
[73]Lior N. Power from space[J]. Energy Conversion Management,2001,42( 15 /17) : 1 769-1 805.

相似文献/References:

[1]张媛媛,沈聿农,王永平,等.风光互补发电实验教学平台的搭建和研究[J].南京师范大学学报(工程技术版),2015,15(01):015.
 Zhang Yuanyuan,Shen Yunong,Wang Yongping,et al.The Study of an Experimental Teaching Platform of Wind and Solar Hybrid Power Generation System[J].Journal of Nanjing Normal University(Engineering and Technology),2015,15(03):015.
[2]曲培培,牛宝联,安海洋,等.太阳能微通道分离式热管供暖系统实验研究[J].南京师范大学学报(工程技术版),2017,17(04):044.[doi:10.3969/j.issn.1672-1292.2017.04.008]
 Qu Peipei,Niu Baolian,An Haiyang,et al.Experimental Study of Solar Micro ChannelSeparated Heat Pipe Heating System[J].Journal of Nanjing Normal University(Engineering and Technology),2017,17(03):044.[doi:10.3969/j.issn.1672-1292.2017.04.008]

备注/Memo

备注/Memo:
基金项目: 江苏省高校自然科学基础研究项目( 09KJB480001) 、南京师范大学高层次人才资助项目( 2008112XGQ0106) .通讯联系人: 李应林,博士,讲师,研究方向: 空调制冷新技术及可再生能源利用. E-mail: liyinglin@ njnu. edu. Cn
更新日期/Last Update: 2013-03-21