[1]廉美琳,陈泽宇,顾志华,等.基于模糊神经网络整定的汽油机怠速PID控制[J].南京师范大学学报(工程技术版),2012,12(04):006-10.
Lian Meilin,Chen Zeyu,Gu Zhihua,et al.PID Control of Engine Idle Speed Based on Fuzzy Neural Network[J].Journal of Nanjing Normal University(Engineering and Technology),2012,12(04):006-10.
点击复制
基于模糊神经网络整定的汽油机怠速PID控制
南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]
- 卷:
-
12卷
- 期数:
-
2012年04期
- 页码:
-
006-10
- 栏目:
-
- 出版日期:
-
2012-12-20
文章信息/Info
- Title:
-
PID Control of Engine Idle Speed Based on Fuzzy Neural Network
- 作者:
-
廉美琳1; 陈泽宇2; 顾志华1; 徐晓慧1; 张金龙1
-
( 1. 南京师范大学电气与自动化工程学院,江苏南京210042) ( 2. 华中科技大学机械科学与工程学院,湖北武汉430074)
- Author(s):
-
Lian Meilin1; Chen Zeyu2; Gu Zhihua1; Xu Xiaohui1; Zhang Jinlong1
-
1.School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210042,China
-
- 关键词:
-
汽油机; 怠速控制; 模糊神经网络; PID 控制
- Keywords:
-
gasoline engine; idling speed control; fuzzy neural network; PID control
- 分类号:
-
TK411
- 摘要:
-
针对汽油机怠速工况的非线性、时变性和不确定性,传统PID控制难以获得理想控制效果的问题,提出一种基于模糊神经网络的PID控制方法,将模糊控制、神经网络与PID控制相结合,给出了BP神经网络模型,采用3层前向网络,动态BP算法,利用神经网络的自学习和自适应能力,实时调整网络的权值,改变PID控制器的控制参数,整定出一组适用于PID控制的kp、ki、kd参数,实现汽油机怠速PID控制的自适应和智能化控制.实验结果表明,采用BP神经网络整定的PID控制,控制响应快、鲁棒性强,可减小怠速波动,提高汽油机怠速的稳定性.
- Abstract:
-
In view of the existing non-linearity, time-variation and unsteadiness of idling process in gasoline engine and the difficulty in obtaining a good performance by traditional PID control, an idling PID control based on fuzzy neural network is proposed. A control platform combining fuzzy control,neural network and PID control is applied in idling control of gasoline engine. We set up a radial basis function( BP) neural network model. The dynamic BP algorithms of three layers forward networks is adopted. By the function of self-learning and adaptability the weights of BP network and the parameters of PID are adjusted in real time to a group of kp ,k i and kd suitable for the idling control, therefore the selfadaptation and intelligent control of the engine idling PID control can come true. The experimental result shows that PID controller based on BP neural network adjusting has such better control performance as quick response and good robustness, and decrease idling speed fluctuation and that it improves obviously the stability of idling operation.
参考文献/References:
[1] 李岳林,王立标,曾志伟等. 汽油机怠速稳定性的复合模糊-PID 控制方法研究[J]. 内燃机工程, 2010, 31( 3) : 57-60. Li Yuelin,Wang Libiao,Zeng Zhiwei, et al. Study of compound fuzzy-PID control method for gasoline engine idling speed control [J]. Chinese Internal Combustion Engine Engineering, 2010, 31( 3) : 57-60. ( in Chinese)
[2] 苏岩,刘忠长,郭亮等. 基于PID 对柴油机怠速稳定性控制的研究与优化[J]. 内燃机工程, 2008, 29( 3) : 20-24. Su Yan,Liu Zhongchang,Guo Liang, et al. Study and optimization of idle stability cntrol of diesel engine based on PID[J]. Chinese Internal Combustion Engine Engineering, 2008, 29( 3) : 20-24. ( in Chinese)
[3] 张翠平,杨庆佛,韩以仑. 汽油机怠速稳定性的模糊控制仿真研究[J]. 内燃机工程, 2003, 24( 4) : 38-41 Zhang Cuiping,Yang Qingfo,Han Yilun. A simulation of fuzzy control idling speed stability controlling for gasoline engines [J]. Chinese Internal Combustion Engine Engineering. 2003, 24( 4) : 38-41. ( in Chinese)
[4] Zhang F J,Huang Y. Fuzzy control method for gasoline engine idle speed control[J]. Journal of Beijing Institute of Technology, 2000( 4) : 408-414.
[5] Ye Z M. Modeling, identification,design and implementation of nonlinear automotive idle speed control systems-an overview [J]. IEEE Transaction on Systems,Man, and Cybernetics, 2007, 37( 6) : 1 137-1 151.
[6] Thornhill M,Thompson S,Sindano H. A comparison of idle speed control schemes[J]. Control Engineering Practice, 2000,8 ( 5) : 519-530.
[7] Alex G, Ilya K,Davor H. Application of disturbance observers to automotive engine idle speed control for fuel economy improvement [C]/ /and Proceeding of the 2006 American Control Conference. USA: [s. n. ], 2006: 1 197-1 202.
[8] Grizzle J W,Buckland J,Sun J. Idle speed control of a direct injection spark ignition stratified charge engine[J]. International Journal of Robust and Nonlinear Control, 2001, 11: 1 043-1 071.
[9] Huang C L,Chang L J. Internet-based smart-space navigation of a car-like wheeled robot using fuzzy-neural adaptive control [J]. IEEE Transactions on Fuzzy Systems, 2008, 16( 5) : 1 271-1 284.
备注/Memo
- 备注/Memo:
-
基金项目:江苏省自然科学基金( BK2009406) .
通讯联系人:张金龙,博士,教授,研究方向: 超精密定位技术. E-mail: zjl0310@163. Com
更新日期/Last Update:
2013-03-21