[1]褚红燕,李奇贺,陆炜.不可靠通信通道Markovian跳变系统的量化分析与设计[J].南京师范大学学报(工程技术版),2012,12(04):050-54.
Chu Hongyan,Li Qihe,Lu Wei.Analysis and Design for Discrete Markovian Jump Time-Delay Systems With Unreliable Communication Channel Based on Signal Quantization[J].Journal of Nanjing Normal University(Engineering and Technology),2012,12(04):050-54.
点击复制
不可靠通信通道Markovian跳变系统的量化分析与设计
南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]
- 卷:
-
12卷
- 期数:
-
2012年04期
- 页码:
-
050-54
- 栏目:
-
- 出版日期:
-
2012-12-20
文章信息/Info
- Title:
-
Analysis and Design for Discrete Markovian Jump Time-Delay Systems With Unreliable Communication Channel Based on Signal Quantization
- 作者:
-
褚红燕; 李奇贺; 陆炜
-
南京师范大学能源与机械工程学院,江苏南京210042
- Author(s):
-
Chu Hongyan; Li Qihe; Lu Wei
-
School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210042,China
-
- 关键词:
-
Markovian 跳变系统; 凸性; 信号量化
- Keywords:
-
Markovian jump systems; convexity property; signal quantization
- 分类号:
-
TP13
- 摘要:
-
研究了具有不可靠通信通道的离散时间markovian跳变系统的量化控制问题.首先,构造离散Lyapunov函数,利用矩阵不等式的凸性以及线性矩阵不等式技术,得到具有较小保守性的稳定性条件;其次,根据线性矩阵不等式技术求解量化反馈控制器设计的增益,稳定性条件和控制器增益设计最后转换成线性矩阵不等式方程的求解,通过matlab可以很容易实现;最后通过数值例子来例证所述方法的有效性.
- Abstract:
-
This paper investigates the issue of quantized controller for discrete-time markovian jump systems with unreliable communication channel. Firstly,by exploiting a discrete Lyapunov function and using the convexity property of the matrix inequality as well as Jessen inequality, new criteria are derived which are less conservative. Secondly, based on the obtained conditions, the gain of quantized controller can be easily obtained through Matlab in terms of linear matrix inequalities ( LMIs) . Finally,a numerical example is provided to show the effectiveness of the proposed theoretical results.
参考文献/References:
[1] Chen W H,Guan Z H,Yu P. Delay-dependent stability and H∞ control of uncertain discrete-time Markovian jump systems with mode-dependent time delays[J]. Systems and Control Letters, 2004, 52( 5) : 361-376.
[2] Xiong J I,Lam J. Stabilization of discrete-time Markovian jump linear systems via time-delayed controllers[J]. Automatica, 2006, 42( 5) : 747-753.
[3] Chang Hua,Fang Yangwang,Lou Shuntian. Stabilization of discrete-time singular Markov jump systems[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44( 1) : 65-69.
[4] Brockett R W,Liberzon D. Quantized feedback stabilization of linear systems[J]. IEEE Transactions on Automatic Control, 2000, 45: 1 279-1 289.
[5] Liberzon D. Hybrid feedback stabilization of systems with quantized signals[J]. Automatica, 2003, 39: 1 543-1 554.
[6] Fu M Y,Xie L H. The sector bound approach to quantized feedback control[J]. IEEE Transactions on Automatic Control, 2005, 50: 1 698-1 711.
[7] Zhai G,Mi Y, Imae J, et al. Design of H∞ feedback control systems with quantized signals[C]/ /Proceedings of the 16th IFAC World Congress. Prague, 2005.
[8] Montestruque L,Antsaklis P. On the model-based control of networked systems[J]. Automatica, 2003, 39( 10) : 1 837-1 843.
[9] Montestruque L,Antsaklis P. Stability of model-based networked control systems with time-varying transmission times[J]. IEEE Transactions on Automatic Control, 2004, 49( 9) : 1 562-1 572.
[10] Ling Q,Lemmon M D. Power spectral analysis of networked control systems[J]. IEEE Transactions on Automatic Control, 2004, 49( 6) : 955-960.
[11] Xiong J I,Lam J. Stabilization of discrete-time Markovian jump linear systems via time-delayed controllers[J]. Automatica, 2006, 42( 5) : 747-753.
[12] Shi P,Boukas E K,Agarwal R K. Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay[J]. IEEE Transactions on Automatic Control, 1999, 44( 11) : 2 139-2 144.
[13] Wu M,He Y,She J H, et al. Delay-dependent criteria for robust stability of time-varying delay systems[J]. Automatica, 2004, 40( 8) : 1 435-1 439.
备注/Memo
- 备注/Memo:
-
基金项目:江苏省高校自然科学研究项目( 10KJB510009) 、江苏省自然科学基金( BK2012469) .
通讯联系人:褚红燕,博士,实验师,研究方向: 非线性网络控制系统. E-mail: 63054@ njnu. edu. Cn
更新日期/Last Update:
2013-03-21