[1]金霁.加工时间是开工时间线性函数的两人合作排序博弈问题[J].南京师范大学学报(工程技术版),2012,12(04):087-92.
 Jin Ji.Two Cooperative Game Problem on Scheduling With Linear Processing Time of Its Starting Time[J].Journal of Nanjing Normal University(Engineering and Technology),2012,12(04):087-92.
点击复制

加工时间是开工时间线性函数的两人合作排序博弈问题
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
12卷
期数:
2012年04期
页码:
087-92
栏目:
出版日期:
2012-12-20

文章信息/Info

Title:
Two Cooperative Game Problem on Scheduling With Linear Processing Time of Its Starting Time
作者:
金霁
苏州市职业大学基础部,江苏苏州215104
Author(s):
Jin Ji
Foundation Department,Suzhou Vocational University,Suzhou 215104,China
关键词:
排序博弈合作收益最大流程时间线性函数
Keywords:
scheduling game cooperationprofitmaximum flow time linear function
分类号:
O225
摘要:
现实活动中,存在大量的需要由多人合作才能完成某项工作的情况.针对两人合作共同加工一批工件,每人有一台加工机器,每个工件只需加工一次,工件加工时间是开工时间的线性函数的问题建立数学模型,考虑以最小的最大流程时间作为加工成本,确定这批工件的一个划分,把工件分配给两台机器加工.该划分方案不仅考虑到合作双方的效率,而且充分体现公平性原则,从而使双方对相应的合作(加工)收益分配满意,愿意合作.
Abstract:
In the real world, there exist many situation where many persons need cooperate in order to complete a project. We establish a mathematical model of the problem where two persons process a batch of jobs by cooperation. Each person offers a single machine and each job with linear processing time of its starting time just needs to be processed once. If we define the minimized maximum flow time as a processing cost,determine a division of these jobs which not only considers the efficiency of each person but also embodies the fairness principle, to yield a reasonable cooperative( processing) profit allocation scheme acceptable to them.

参考文献/References:

[1] Chen Q L. A new discrete Bargaining model on job partition between two manufacturers[D]. Hongkong: The Chinese University of Hong Kong, 2006.
[2] Nash J F. The bargaining problem[J]. Econometrica, 1950, 18( 2) : 155-162.
[3] Nash J F. Two person cooperative games[J]. Econometrica, 1953, 21( 1) : 128-140.
[4] Gan X B,Gu Y H,Vairaktarakis G L, et al. A scheduling problem with one producer and the bargaining counterpart with two producers[J]. Lecture Notes in Computer Science, 2007, 4614: 305-316.
[5] Gu Y H,Chen Q L. Some Extended Knapsack Problems Involving Job Partition Between Two Parties[J]. Appl Math J Chinese Univ Ser B, 2007, 22( 3) : 366-370.
[6] Gu Y H,Fan J,Tang G C, et al. Maximum latency scheduling problem on two-person cooperative games[J /OL]. Journal of Combinatorial Optimization,( 2011-11-16) [2012-04-18]. http: / /www. springerlink. com/content /6mm57855x5598kv8 / fulltext. pdf.
[7] Gu Y H,Goh M,Chen Q L,et al. A new two-party bargaining mechanism[J /OL]. Journal of Combinatorial Optimization, ( 2011-11-02) [2012-04-18]. http: / /www. springerlink. com/content /q40684034261hh62 /fulltext. pdf.
[8] 金霁,顾燕红,唐国春. 最大完工时间排序的两人合作博弈[J]. 上海第二工业大学学报, 2011, 28( 1) : 14-17. Jin Ji,Gu Yanhong,Tang Guochun. Two-person cooperative games on makespan scheduling[J]. Journal of Shanghai Second Polytechnic University, 2011, 28( 1) : 14-17. ( in Chinese)
[9] 顾燕红,金霁,唐国春. 加工时间可变最大流程时间排序的纳什合作博弈[J]. 重庆师范大学学报: 自然科学版, 2012, 29 ( 4) : 18-23. Gu Yanhong, Jin Ji,Tang Guochun. Nash bargaining on maximum flow time scheduling with changeable processing time[J]. Journal of Chongqing Normal University: Natural Science Edition, 2012, 29( 4) : 18-23. ( in Chinese)
[10] Muthoo A. Bargaining Theory With Applications[M]. Cambridge,United Kingdom: Cambridge University Press, 1999.

相似文献/References:

[1]陈 玙,钱 钢,沈玲玲.考虑消费者环境偏好和制造商风险规避的定价策略分析[J].南京师范大学学报(工程技术版),2017,17(02):087.[doi:10.3969/j.issn.1672-1292.2017.02.014]
 Chen Yu,Qian Gang,Shen Lingling.Pricing Strategy Analysis Considering ConsumerEnvironmental Preference and Risk Aversion[J].Journal of Nanjing Normal University(Engineering and Technology),2017,17(04):087.[doi:10.3969/j.issn.1672-1292.2017.02.014]

备注/Memo

备注/Memo:
基金项目:苏州市职业大学青年基金资助项目( 2011SZDQ05) .
通讯联系人:金霁,讲师,研究方向: 排序论. E-mail: szjinji@126. Com
更新日期/Last Update: 2013-03-21