[1]黄雯迪,闵富红.单一驱动多响应分数阶混沌系统的完全同步[J].南京师范大学学报(工程技术版),2015,15(02):001.
 Huang Wendi,Min Fuhong.Complete Synchronization of Single-Drive and Multiple-Response Fractional-Order Chaotic System[J].Journal of Nanjing Normal University(Engineering and Technology),2015,15(02):001.
点击复制

单一驱动多响应分数阶混沌系统的完全同步
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
15卷
期数:
2015年02期
页码:
001
栏目:
电气与电子工程
出版日期:
2015-06-20

文章信息/Info

Title:
Complete Synchronization of Single-Drive and Multiple-Response Fractional-Order Chaotic System
作者:
黄雯迪闵富红
南京师范大学电气与自动化工程学院,江苏 南京 210042
Author(s):
Huang WendiMin Fuhong
School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210042,China
关键词:
分数阶混沌系统同步不等阶完全同步控制
Keywords:
fractional-order chaotic systemssynchronizationunequal ordercomplete synchronization control
分类号:
TP391.9
文献标志码:
A
摘要:
基于复杂的分数阶异构系统同步问题,采用完全同步控制法设计非线性控制器,从而实现用一个新型的三维分数阶混沌系统,同时驱动整数阶Duffing系统和分数阶超混沌Lorenz系统. 利用分数阶稳定性定理对所设计的控制器给予理论证明,并通过数值仿真验证了方案的有效性.
Abstract:
To synchronize the complex fractional chaotic systems of different structures,the complete synchronization control method is adopted to design a nonlinear controller which is used to drive the integral-order Duffing system and fractional-order hyperchaotic Lorenz system by a new 3-D fractional-order chaotic system. Based on the fractional theory of stability,the scheme of the nonlinear controller is proved. Moreover,numerical results also show the validity of the method.

参考文献/References:

[1] Pecora L M,Carroll T L. Synchronization in Chaotic systems[J]. Physical Review Letters,1990,64(8):821-824.
[2]张若洵,杨洋,杨世平,等. 分数阶统一混沌系统的自适应同步[J]. 物理学报,2009,58(9):6 039-6 044.
Zhang Ruoxun,Yang Yang,Yang Shiping,et al. Adaptive synchronization of the fractional-order unified chaotic system[J]. Acta Physica Sinica,2009,58(9):6 039-6 044.(in Chinese)
[3]王兴元,贺毅杰. 分数阶统一混沌系统的投影同步[J]. 物理学报,2008,57(3):1 485-1 492.
Wang Xingyuan,He Yijie. Projective synchronization of the fractional order unified system[J]. Acta Physica Sinica,2008,57(3):1 485-1 492.(in Chinese)
[4]胡建兵,韩焱,赵灵冬. 基于Lyapunov方程的分数阶混沌系统同步[J]. 物理学报,2008,57(12):7 522-7 525.
Hu Jianbing,Han Yan,Zhao Lingdong. Synchronizing fractional chaotic systems based on Lyapunov equation[J]. Acta Physica Sinica,2008,57(12):7 522-7 525.(in Chinese)
[5]曹鹤飞,张若洵. 基于滑模控制的分数阶混沌系统的自适应同步[J]. 物理学报,2011,60(5):121-125.
Cao Hefei,Zhang Ruoxun. Adaptive synchronization of fractional-order chaotic system via sliding mode control[J]. Acta Physica Sinica,2011,60(5):121-125.(in Chinese)
[6]蔡娜,井元伟,张嗣瀛,等. 不同结构混沌系统的自适应同步和反同步[J]. 物理学报,2009,58(2):802-813.
Cai Na,Jing Yuanwei,Zhang Siying,et al. Adaptive synchronization and anti-synchronization of two different chaotic systems[J]. Acta Physica Sinica,2009,58(2):802-813.(in Chinese)
[7]张成芬,高金峰,徐磊,等. 分数阶Liu系统与分数阶统一系统中的混沌现象及二者的异结构同步[J]. 物理学报,2007,56(9):5 124-5 130.
Zhang Chengfen,Gao Jinfeng,Xu Lei,et al. Chaos in fractional-order Liu system and a fractional-order unified system and the synchronization between them[J]. Acta Physica Sinica,2007,56(9):5 124-5 130.(in Chinese)
[8]董俊,张广军,姚宏,等. 分数阶异结构超混沌系统完全同步与反相同步控制[J]. 动力学与控制学报,2014(2):119-126.
Dong Jun,Zhang Guangjun,Yao Hong,et al. The control of complete synchronization and anti-phase synchronization for fractiopnal-order hyper-chaotic systems of different structures[J]. Journal of Dynamics and Control,2014(2):119-126.(in Chinese)
[9]周平,邝菲. 分数阶混沌系统与整数阶混沌系统之间的同步[J]. 物理学报,2010,59(10):6 851-6 858.
Zhou Ping,Kuang Fei. Synchronzation between fractional-order chaotic system and chaotic system of integer orders[J]. Acta Physica Sinica,2010,59(10):6 851-6 858.(in Chinese)
[10]Matignon D. Stability result on fractional differential equations with applications to control processing[C]//Proceedings of the IEEE SMC Conference. Lille,France,1996:963-968.
[11]胡建兵,韩焱,赵灵冬. 一种新的分数阶系统稳定理论及在back-stepping方法同步分数阶混沌系统中的应用[J]. 物理学报,2009,58(4):2 235-2 238.
Hu Jianbing,Han Yan,Zhao Lingdong. A novel stability theorem for fractional systems and its applying in synchronizing fractional chaotic system based on back-stepping approach[J]. Acta Physica Sinica,2009,58(4):2 235-2 238.(in Chinese)
[12]邵书义. 新型混沌系统的动力学分析、同步控制及应用[D]. 南京:南京师范大学电气与自动化工程学院,2014.
Shao Shuyi. The dynamics analysis,synchronization,control and application of novel chaotic system[D]. Nanjing:School of Electrical and Automation Engineering,Nanjing Normal University,2014.(in Chinese)
[13]王永生,肖子才,孙瑾,等. Duffing混沌系统电路仿真研究[J]. 电路与系统学报,2008,13(1):131-135.
Wang Yongsheng,Xiao Zicai,Sun Jin,et al. Simulation and experimental study on the chaos circuit of Duffing oscillator[J]. Journal of Circuits and Systems,2008,13(1):131-135.
[14]王兴元,王明军. 超混沌Lorenz系统[J]. 物理学报,2007,56(9):136-141.
Wang Xingyuan,Wang Mingjun. Hyperchaotic Lorenz system[J]. Acta Physica Sinica,2007,56(9):136-141.(in Chinese)
[15]魏赟. 分数阶超混沌Lorenz系统及同步研究[J]. 太原科技大学学报,2010,31(1):72-75.
Wei Yun. Fractional order hyperchaotic Lorenz system and its synchronization[J]. Journal of Taiyuan University of Science and Technology,2010,31(1):72-75.(in Chinese)
[16]郝建红,宾虹,张潇䶮,等. 不确定混沌系统的同步控制及参数辨识[J]. 河北师范大学学报:自然科学版,2014,38(1):30-35.
Hao Jianhong,Bin Hong,Zhang Xiaoyan,et al. Synchronization of uncertain chaotic systems and parameters identification[J]. Journal of Hebei Normal University:Natural Science Edition,2014,38(1):30-35.

备注/Memo

备注/Memo:
收稿日期:2014-12-31.
基金项目:江苏省普通高校研究生科研创新计划项目(KYLX_0722).
通讯联系人:闵富红,博士,副教授,研究方向:非线性电路与系统. E-mail:minfuhong@njnu. edu. Cn
更新日期/Last Update: 2015-06-20