[1]陈 斌,东一舟,毛明荣.基于分类邮件代理MCP的垃圾邮件动态检测[J].南京师范大学学报(工程技术版),2017,17(03):080.[doi:10.3969/j.issn.1672-1292.2017.03.012]
 Chen Bin,Dong Yizhou,Mao Mingrong.Dynamic Detection of Spam Based on Classified Mail Proxy MCP[J].Journal of Nanjing Normal University(Engineering and Technology),2017,17(03):080.[doi:10.3969/j.issn.1672-1292.2017.03.012]
点击复制

基于分类邮件代理MCP的垃圾邮件动态检测
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
17卷
期数:
2017年03期
页码:
080
栏目:
计算机工程
出版日期:
2017-09-30

文章信息/Info

Title:
Dynamic Detection of Spam Based on Classified Mail Proxy MCP
文章编号:
1672-1292(2017)03-0080-07
作者:
陈 斌东一舟毛明荣
南京师范大学信息化建设管理处,江苏 南京 210023
Author(s):
Chen BinDong YizhouMao Mingrong
Informatization Office of Nanjing Normal University,Nanjing 210023,China
关键词:
垃圾邮件宿主机代理虚拟机简单邮件传输协议会话分类代理分类器邮件状态信息
Keywords:
spam hostproxy virtual machinesmtp sessionclassified agentclassifiermail status message
分类号:
TP39
DOI:
10.3969/j.issn.1672-1292.2017.03.012
文献标志码:
A
摘要:
针对互联网邮件中垃圾邮件占比暴增的问题,提出了一种基于分类代理MCP的动态检测算法. 该方法基于近半年时间对校园网邮件宿主机及各代理虚拟机间传输的会话日志的采集,针对记录中各类投递状态及状态消息集进行了行为分析,最终达到对垃圾邮件的有效检测,从而为分拣提供依据. 实验结果表明,在持续进行了若干频次的分类策略调节后,该检测算法的准确度可高达96.1%. 该设计可对垃圾邮件宿主机及代理虚拟机的行为进行有效检测,从而彻底抑制垃圾邮件的产生.
Abstract:
In order to solve the problem of increasing the proportion of spam in Internet mail,a dynamic detection algorithm based on MCP is proposed. Based on the collection of the session logs collected from the campus network mail hosts and virtual agents in the past six months,the method analyzes all kinds of delivery status and status message set in the record,and achieves the result of effective spam detection finally,so as to provide the basis for sorting. The experimental results show that after a certain number of frequency classification strategy is adjusted,the highest accuracy of the detection algorithm is up to 96.1%. The design detects the behavior of spam host and virtual machine effectively,and completely suppresses the generation of spam.

参考文献/References:

[1] ALBERTO C,TERESA G V. Activity recommendation in intelligent campus environments based on the Eduroam federation[J]. Journal of ambient intelligence and smart environments,2016,8(2):35-46.
[2]STEPHEN M A,MATTHEW F,CLIVE G. Comparison of a cost-effective virtual cloud cluster with an existing campus cluster[J]. Future generation computer systems,2014,41(1):65-78.
[3]DEBELE F G,LI N,MEO M,et al. Experimenting resource on demand strategies for green WLANs[J]. Sigmetrics Perform Eval Rev,2014,42(3):61-66.
[4]张绍成,刘威,程子傲,等. 代价敏感多主题学习的邮件过滤算法[J]. 华中科技大学学报(自然科学版),2016,10(44):176-180.
ZHANG S C,LIU W,CHENG Z A,et al. A spam filtering algorithm based on cost ensitive learning for multiple topics[J]. Journal of Huazhong university of science and technology(natural science edition),2016,10(44):176-180.(in Chinese)
[5]梅峥,厉启鹏,李西太,等. 电力消息邮件体系架构及关键技术[J]. 电力系统自动化,2016,20(40):126-132.
MEI Z,LI Q P,LI X T,et al. Architecture and key techniques of message mail in electric power systems[J]. Automation of electric power systems,2016,20(40):126-132.(in Chinese)
[6]王友卫,刘元宁,凤丽洲,等. 基于用户兴趣度的垃圾邮件在线识别新方法[J]. 华南理工大学学报(自然科学版),2014,42(7):21-27.
WANG Y W,LIU Y N,FENG L Z,et al. A novel online spam identification method based on user interest degree[J]. Journal of South China university of technology(natural science edition),2014,42(7):21-27.(in Chinese)
[7]PAN D R,FU M,SUN J J. A campus community-based mobility model for routing in opportunistic networks[J]. KSII transactions on internet and information systems,2016,10(3):1 034-1 050.
[8]KOSTA S,MEI A,STEFA J. Large-scale synthetic social mobile networks with swim[J]. IEEE transactions on mobile computing,2014,13(1):116-129.
[9]AHMED A,RAMI L,RAOUF B. Flow-based management for energy efficient campus networks[J]. IEEE transactions on network and service management,2015,12(4):565-579.
[10]沈承恩,何军,邓扬. 基于改进堆叠自动编码机的垃圾邮件分类[J]. 计算机应用,2016,36(1):158-162.
SHEN C E,HE J,DENG Y. Spam filtering based on modified stack auto-encoder[J]. Journal of computer applications,2016,36(1):158-162.(in Chinese)
[11]WEN T H,WEI C B C. Incorporation of spatial interactions in location networks to identify critical geo-referenced routes for assessing disease control measures on a large-scale campus[J]. International journal of environmental research and public health,2015,12(1):4 170-4 184.
[12]ELISA R A,GUILLERMO I A,JOSE M G G. All-path bridging:path exploration protocols for data center and campus networks[J]. Computer networks,2015,79(1):120-132.

备注/Memo

备注/Memo:
收稿日期:2017-01-19.
基金项目:中国高等教育学会教育信息化专项课题(2016XXYB02).
通讯联系人:陈斌,博士,工程师,研究方向:云计算技术. E-mail:njnuchenbin@njnu.edu.cn
更新日期/Last Update: 2017-09-30