[1]欧丰林,吴慧君,杨文元.视频目标跟踪的颜色特征学习率优化分析[J].南京师范大学学报(工程技术版),2019,19(03):059.[doi:10.3969/j.issn.1672-1292.2019.03.009]
 Ou Fenglin,Wu Huijun,Yang Wenyuan.Optimization Analysis of Target Tracking Learning Rate via Color Feature[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(03):059.[doi:10.3969/j.issn.1672-1292.2019.03.009]
点击复制

视频目标跟踪的颜色特征学习率优化分析
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
19卷
期数:
2019年03期
页码:
059
栏目:
计算机工程
出版日期:
2019-09-30

文章信息/Info

Title:
Optimization Analysis of Target Tracking Learning Rate via Color Feature
文章编号:
1672-1292(2019)03-0059-07
作者:
欧丰林1吴慧君1杨文元2
(1.漳州职业技术学院信息工程学院,福建 漳州 363000)(2.闽南师范大学福建省粒计算及其应用重点实验室 福建漳州 363000)
Author(s):
Ou Fenglin1Wu Huijun1Yang Wenyuan2
(1.School of Information Engineering,Zhangzhou Institute of Technology,Zhangzhou 363000,China)(2.Fujian Key Laboratory of Granular Computing and Application,Minnan Normal University,Zhangzhou 363000,China)
关键词:
计算机视觉视频目标跟踪颜色特征优化分析学习率相似性度量
Keywords:
computer visionvideo target trackingcolor characteristicsoptimization analysislearning ratesimilarity measure
分类号:
TP391.4
DOI:
10.3969/j.issn.1672-1292.2019.03.009
文献标志码:
A
摘要:
目标跟踪是智能视频监控系统的关键技术基础,在视觉目标实时跟踪过程中往往因为漂移而降低精度. 针对这个问题,在颜色特征的基础上,通过分析和优化学习率来抑制漂移,提高目标跟踪的精度. 首先,利用RGB颜色特征建立目标背景与干扰感知目标模型. 其次,根据干扰感知的模型计算目标跟踪对象的干扰区域与目标区域的概率值与距离值. 最后,通过引入不同的学习率,优化目标跟踪中概率值与距离值进行目标定位,得到跟踪结果的最优值. 采用VOT2016评估基准60组视频序列验证优化分析的有效性,实验结果表明对学习率进行优化,目标跟踪的精度和速度均有一定程度提高.
Abstract:
Target tracking is one of the key technologies in the intelligent video monitoring system. Aiming at this problem,this paper analyzes and optimizes the learning rate on the basis of color features to suppress drift and improve the accuracy of target tracking. Firstly,the target background and interference perception target model are established by using RGB color features.Secondly,the probability and distance values of the interference region and the target region of the target tracking object are calculated according to the disturbance perception model. Finally,different learning rates are introduced to optimize the target location of the probability value and distance value in the target tracking,and the optimal value of the tracking result is obtained. In this paper,the effectiveness of the optimization analysis is verified by using the VOT2016 evaluation benchmark group of 60 video sequences. The experimental results show that the optimization of learning rate,the accuracy and speed of target tracking are improved to a certain extent.

参考文献/References:

[1] YANG H,SHAO L,ZHENG F,et al. Recent advances and trends in visual tracking:a review[J]. Neurocomputing,2011,74(18):3823-3831.
[2]WANG D,LU H,YANG M H. Least soft-threshold squares tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland Oregon,USA,2013.
[3]JO?O F H,CASEIRO R,MARTINS P,et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//Proceedings of the European Conference on Computer Vision. Florence,Italy,2012.
[4]胡良梅,段琳琳,张旭东,等. 融合颜色信息与深度信息的运动目标检测方法[J]. 电子与信息学报,2014,36(9):2047-2052.
HU L M,DUAN L L,ZHANG X D,et al. Moving object detection based on the fusion of color and depth information[J]. Journal of electronics & information technology,2014,36(9):2047-2052.(in Chinese)
[5]POSSEGGER H,MAUTHNER T,BISCHOF H. In defense of color-based model-free tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Prague Czech Republic,2015.
[6]张焱,张志龙,沈振康,等. 基于动态显著性特征的粒子滤波多目标跟踪算法[J]. 电子学报,2008,36(12):2306-2311.
ZHANG Y,ZHANG Z L,SHEN Z K,et al. The images tracking algorithm using particle filter based on dynamic salient features of targets[J]. Acta automatica sinica,2008,36(12):2306-2311.
[7]王欢,王江涛,任明武,等. 一种鲁棒的多特征融合目标跟踪新算法[J]. 中国图象图形学报,2009(3):489-498.
WANG H,WANG J T,REN M W,et al. A new robust object tracking algorithm by fusing multi-features[J]. Journal of image and graphics,2009,14(3):489-498.(in Chinese)
[8]DANELLJAN M,KHAN F S,FELSBERG M,et al. Adaptive color attributes for real-time visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Columbus Ohio,2014.
[9]顾鑫,王海涛,汪凌峰,等. 基于不确定性度量的多特征融合跟踪[J]. 自动化学报,2011,37(5):550-559.
GU X,WANG H T,WANG L F,et al. Fusing multiple features for object tracking based on uncertainty measurement[J]. Acta automatica sinica,2011,37(5):550-559.(in Chinese)
[10]VAN D W J,SCHMID C,VERBEEK J,et al. Learning color names for real-world applications[J]. IEEE transactions on image processing,2009,18(7):1512-1523.
[11]HENRIQUES J F,CASEIRO R,MARTINS P,et al. High-speed tracking with kernelized correlation filters[J]. IEEE transactions on pattern analysis and machine intelligence,2015,37(3):583-596.
[12]KHAN F S,WEIJER J V,VANRELL M. Modulating shape features by color attention for object recognition[J]. International journal of computer vision,2012,98(1):49-64.
[13]田鹏,吕江花,马世龙,等. 基于局部差别性分析的目标跟踪算法[J]. 电子与信息学报,2017,39(11):2635-2643.
TIAN P,Lü J H,MA S L,et al. Robust object tracking based on local discriminative analysis[J]. Journal of electronics and information technology,2017,39(11):2635-2643.(in Chinese)
[14]YILMAZ A. Kernel-based object tracking using asymmetric kernels with adaptive scale and orientation selection[J]. Machine vision and applications,2011,22(2):255-268.
[15]许婉君,侯志强,余旺盛,等. 基于颜色和空间信息的多特征融合目标跟踪算法[J]. 应用光学,2015,36(5):755-761.
XU W J,HOU Z Q,YU W S,et al. Fusing multi-feature for object tracking algorithm based on color and space information[J]. Journal of applied optics,2015,36(5):755-761.(in Chinese)
[16]LU H,JIA X,YANG M H,et al. Visual tracking via adaptive structural local sparse appearance model[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Springer Berlin Heidelberg,2012.
[17]NEBEHAY G,PFLUGFELDER R. Consensus-based matching and tracking of keypoints for object tracking[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Colorado,USA,2014.
[18]PREZ P,HUE C,VERMAAK J,et al. Color-based probabilistic tracking[C]//Proceedings of European Conference on Computer Vision. Copenhagen Denmark,2002.
[19]HE S,YANG Q,LAU R,et al. Visual tracking via locality sensitive histograms[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington DC,USA,2013.
[20]毕笃彦,库涛,查宇飞,等. 基于颜色属性直方图的尺度目标跟踪算法研究[J]. 电子与信息学报,2016,38(5):1099-1106.
BI D Y,KU T,ZHA Y F,et al. Scale-adaptive object tracking based on color names histogram[J]. Journal of electronics and information technology,2016,38(5):1099-1106.
[21]KRISTAN M,LEONARDIS A,MATAS J,et al. The visual object tracking VOT2016 challenge results[C]//Proceedings of European Conference on Computer Vision. Amsterdam Netherlands,2016.
[22]ZHANG M,XING J,GAO J,et al. Robust visual tracking using joint scale-spatial correlation filters[C]//Proceedings of the IEEE International Conference on Image Processing. Quebec City,Canada,2015.
[23]DANELLJAN M,KHAN F S,FELSBERG M,et al. Accurate scale estimation for robust visual tracking[C]//Proceedings of British Machine Vision Conference. University of Nottingham,2014.
[24]LI Y,ZHU J K. A scale adaptive kernel correlation filter tracker with feature integration[C]//Proceedings of European Conference on Computer Vision. Zurich Switzerland,2014.
[25]BERTINETTO L,VALMADRE J,GOLODETZ S,et al. Staple:complementary learners for real-time tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Lasvegas Nevada,USA,2016.
[26]MA C,YANG X K,ZHANG C Y,et al. Longterm correlation tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Prague Czech Republic,2015.
[27]DANELLJAN M,BHAT G,KHAN FAHAD S,et al. ECO:Efficient convolution operators for tracking[C]//Computer Vision and Pattern Recognition. Lasvegas Nevada,USA,2016.

相似文献/References:

[1]张 明,翟俊海,许 垒,等.长尾识别研究进展[J].南京师范大学学报(工程技术版),2022,22(02):063.[doi:10.3969/j.issn.1672-1292.2022.02.010]
 Zhang Ming,Zhai Junhai,Xu Lei,et al.Research Advance in Long-tailed Recognition[J].Journal of Nanjing Normal University(Engineering and Technology),2022,22(03):063.[doi:10.3969/j.issn.1672-1292.2022.02.010]
[2]黄戌霞,林淑彬.迁移学习融合双HOG特征的目标跟踪[J].南京师范大学学报(工程技术版),2022,22(04):029.[doi:10.3969/j.issn.1672-1292.2022.04.004]
 Huang Xuxia,Lin Shubin.Object Tracking Based on Transfer Learning Fusion of Dual HOG Feature[J].Journal of Nanjing Normal University(Engineering and Technology),2022,22(03):029.[doi:10.3969/j.issn.1672-1292.2022.04.004]

备注/Memo

备注/Memo:
收稿日期:2019-07-05.
基金项目:国家自然科学青年基金项目(61703196)、福建省自然科学基金项目(2018J01549).
通讯联系人:杨文元,博士,副教授,研究方向:计算机视觉,机器学习. E-mail:yangwy@xmu.edu.cn
更新日期/Last Update: 2019-09-30