[1]梁秦嘉,刘 怀,陆 飞.基于改进YOLOv3的运动目标分类检测算法研究[J].南京师范大学学报(工程技术版),2021,21(04):027-32.[doi:10.3969/j.issn.1672-1292.2021.04.005]
 Liang Qinjia,Liu Huai,Lu Fei.Moving Target Classification and Detection AlgorithmBased on Improved YOLOv3[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):027-32.[doi:10.3969/j.issn.1672-1292.2021.04.005]
点击复制

基于改进YOLOv3的运动目标分类检测算法研究
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
21卷
期数:
2021年04期
页码:
027-32
栏目:
计算机科学与技术
出版日期:
2021-12-15

文章信息/Info

Title:
Moving Target Classification and Detection AlgorithmBased on Improved YOLOv3
文章编号:
1672-1292(2021)04-0027-06
作者:
梁秦嘉刘 怀陆 飞
南京师范大学电气与自动化工程学院,江苏 南京 210023
Author(s):
Liang QinjiaLiu HuaiLu Fei
School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China
关键词:
交通监控卷积神经网络运动目标检测
Keywords:
traffic monitoringconvolutional neural networksmoving object detection
分类号:
TP391.4
DOI:
10.3969/j.issn.1672-1292.2021.04.005
文献标志码:
A
摘要:
提出一种基于改进YOLOv3算法的一类运动目标检测算法. 为进一步提高YOLOv3的检测精度,采用基于DIoU优化的边界框回归损失函数进行计算; 优化非极大值抑制,有效减少了目标框重叠的现象,提高检测精度; 针对运动目标检测,提出一种基于目标框多中心点位移的检测算法. 经UA-DETRAC数据集上的实验表明,改进后的算法在提高检测精度的同时保证了较快的速度,准确率和召回率相比原始YOLOv3分别提高了 8.07%和3.87%,对运动目标的检测速度可达20 fps/s,可满足实时检测的要求.
Abstract:
A kind of moving target detection algorithm based on improved YOLOv3 algorithm is proposed in this paper. In order to improve the detection accuracy of YOLOv3,the boundary box regression loss function based on DIoU optimization is used. Non-maximum suppression is optimized to effectively reduce the overlap of target boxes and improve the detection accuracy. Aiming at moving target detection,a multi-center displacement detection algorithm based on target frame is proposed. The experimental results on UA-DETRAC dataset show that the detection accuracy and the fast speed can be improved by the improved algorithm. Compared with the original YOLOv3,the accuracy and recall rate are increased by 8.07% and 3.87%,respectively. The detection speed of moving target can reach 20 fps/s,which can meet the requirements of real-time detection.

参考文献/References:

[1] PAN M Y,SUN J,YANG Y H,et al. Improved TQWT for marine moving target detection[J]. Journal of Systems Engineering and Electronics,2020,31(3):470-481.
[2]HU H B,XU L,ZHAO H. A spherical codebook in YUV color space for moving object detection[J]. Sensor Letters,2012,10(1-2):177-189.
[3]DU B,SUN Y J,CAI S H,et al. Object tracking in satellite videos by fusing the kernel correlation filter and the three-frame-difference algorithm[J]. IEEE Geoscience and Remote Sensing Letters,2018,15(2):168-172.
[4]WEI P C,HE F,LI J. Fast detection of moving objects based on sequential images processing[J]. Journal of Intelligent and Fuzzy Systems,2020,39(4):5037-5044.
[5]李成美,白宏阳,郭宏伟,等. 一种改进光流法的运动目标检测及跟踪算法[J]. 仪器仪表学报,2018,39(5):249-256.
[6]MANE S,MANGALE S. Moving object detection and tracking using convolutional neural networks[C]//2018 Second International Conference on Intelligent Computing and Control Systems(ICICCS). Madurai,India:IEEE,2018:1809-1813.
[7]ZOU Z X,SHI Z W,GUO Y H,et al. Object detection in 20 years:a survey[J/OL]. Computer Vision and Pattern Recognition,2019 [2021-03-08]. https://arxiv.org/abs/1905.05055.
[8]LI X,LIU Y,ZHAO Z F,et al. A deep learning approach of vehicle multitarget detection from traffic video[J/OL]. Journal of Advanced Transportation,2018(11):1-11 [2021-03-08]. https://doi.org/10.1155/2018/7075814.
[9]JU M,LUO H B,WANG Z B,et al. The application of improved YOLO V3 in multi-scale target detection[J]. Applied Sciences,2019,9(18):3775.
[10]GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision(ICCV). Santiago,Chile:IEEE,2015:1440-1448.
[11]CHEN W P,QIAO Y T,LI Y J. Inception-SSD:An improved single shot detector for vehicle detection[J/OL]. Journal of Ambient Intelligence and Humanized Computing,2020 [2021-03-08]. https://doi.org/10.1007/S12652-020-02085W.
[12]SANG J,WU Z Y,GUO P,et al. An improved YOLOv2 for vehicle detection[J]. Sensors,2018,18(12):4272.
[13]REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL]. [2020-07-27]. https://arxiv.org/abs/1804.02767.
[14]REZATOFIGHI H,TSOI N,GWAK J,et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach,CA,USA:IEEE,2019:658-666.
[15]ZHENG Z H,WANG P,LIU W,et al. Distance-IoU loss:faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2000,34(7):12993-13000.
[16]BODLA N,SINGH B,CHELLAPPA R,et al. Soft-NMS — improving object detection with one line of code[C]//2017 IEEE International Conference on Computer Vision(ICCV). Venice,Italy:IEEE,2017:5562-5570.

相似文献/References:

[1]曹金梦,倪蓉蓉,杨 彪.面向面部表情识别的双通道卷积神经网络[J].南京师范大学学报(工程技术版),2018,18(03):001.[doi:10.3969/j.issn.1672-1292.2018.03.001]
 Cao Jinmeng,Ni Rongrong,Yang Biao.Binary-Channel Convolutional Neural Network forFacial Expression Recognition[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):001.[doi:10.3969/j.issn.1672-1292.2018.03.001]
[2]陈 扬,曾 诚,程 成,等.一种基于CNN的足迹图像检索与匹配方法[J].南京师范大学学报(工程技术版),2018,18(03):039.[doi:10.3969/j.issn.1672-1292.2018.03.006]
 Chen Yang,Zeng Cheng,Cheng Cheng,et al.A CNN-based Approach to Footprint Image Retrieval and Matching[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(04):039.[doi:10.3969/j.issn.1672-1292.2018.03.006]
[3]成 杰,叶文武,徐寅林.回转库档案实时定位中基于鱼眼镜头图像的处理识别技术[J].南京师范大学学报(工程技术版),2019,19(02):075.[doi:10.3969/j.issn.1672-1292.2019.02.010]
 Cheng Jie,Ye Wenwu,Xu Yinlin.Processing and Recognition Technology Based on Fisheye Lens Image in Real-Time Positioning of Rotary Library Files[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):075.[doi:10.3969/j.issn.1672-1292.2019.02.010]
[4]任媛媛,张显峰,马永建,等.基于卷积神经网络的无人机遥感影像农村建筑物目标检测[J].南京师范大学学报(工程技术版),2019,19(03):029.[doi:10.3969/j.issn.1672-1292.2019.03.005]
 Ren Yuanyuan,Zhang Xianfeng,Ma Yongjian,et al.Target Detection of Rural Buildings in UAV Remote Sensing ImagesBased on Convolutional Neural Network[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):029.[doi:10.3969/j.issn.1672-1292.2019.03.005]
[5]许博鸣,刘晓峰,业巧林,等.基于卷积神经网络面向自然场景建筑物识别技术的移动端应用[J].南京师范大学学报(工程技术版),2019,19(03):037.[doi:10.3969/j.issn.1672-1292.2019.03.006]
 Xu Boming,Liu Xiaofeng,Ye Qiaolin,et al.A Convolutional Neural Network Based on Mobile Application forIdentification of Buildings in Natural Scene[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):037.[doi:10.3969/j.issn.1672-1292.2019.03.006]
[6]王 飞,陈亮杰,王 梨,等.基于卷积神经网络的仓储物体检测算法研究[J].南京师范大学学报(工程技术版),2019,19(04):099.[doi:10.3969/j.issn.1672-1292.2019.04.017]
 Wang Fei,Chen Liangjie,Wang Li,et al.Research on Warehouse Object Detection AlgorithmBased on Convolutional Neural Network[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(04):099.[doi:10.3969/j.issn.1672-1292.2019.04.017]
[7]陆 飞,沈世斌,苏晓云,等.基于改进Mask R-CNN的交通监控视频车辆检测算法[J].南京师范大学学报(工程技术版),2020,20(04):044.[doi:10.3969/j.issn.1672-1292.2020.04.007]
 Lu Fei,Shen Shibin,Su Xiaoyun,et al.Vehicle Detection Algorithm Based on Improved Mask R-CNNin Traffic Surveillance Video[J].Journal of Nanjing Normal University(Engineering and Technology),2020,20(04):044.[doi:10.3969/j.issn.1672-1292.2020.04.007]
[8]尚文倩,曹 原.FastGR:一种基于神经协同过滤的群组推荐算法[J].南京师范大学学报(工程技术版),2022,22(02):029.[doi:10.3969/j.issn.1672-1292.2022.02.005]
 Shang Wenqian,Cao Yuan.FastGR:A Group Recommendation Algorithm Based on Neural Collaborative Filtering[J].Journal of Nanjing Normal University(Engineering and Technology),2022,22(04):029.[doi:10.3969/j.issn.1672-1292.2022.02.005]
[9]韩天翊,林荣恒.一种基于决策层融合的多模态情感识别方法[J].南京师范大学学报(工程技术版),2022,22(02):035.[doi:10.3969/j.issn.1672-1292.2022.02.006]
 Han Tianyi,Lin Rongheng.A Multimodal Emotion Recognition Method Based on Decision Level Fusion[J].Journal of Nanjing Normal University(Engineering and Technology),2022,22(04):035.[doi:10.3969/j.issn.1672-1292.2022.02.006]
[10]张宇苏,吴小俊,李 辉,等.基于无监督深度学习的红外图像与可见光图像融合算法[J].南京师范大学学报(工程技术版),2023,23(01):001.[doi:10.3969/j.issn.1672-1292.2023.01.001]
 Zhang Yusu,Wu Xiaojun,Li Hui,et al.Infrared Image and Visible Image Fusion Algorithm Based on Unsupervised Deep Learning[J].Journal of Nanjing Normal University(Engineering and Technology),2023,23(04):001.[doi:10.3969/j.issn.1672-1292.2023.01.001]
[11]梁秦嘉,刘 怀,陆 飞.基于改进YOLOv3模型的交通视频目标检测算法研究[J].南京师范大学学报(工程技术版),2021,21(02):047.[doi:10.3969/j.issn.1672-1292.2021.02.008]
 Liang Qinjia,Liu Huai,Lu Fei.Traffic Video Target Detection Algorithm Based on Improved YOLOv3[J].Journal of Nanjing Normal University(Engineering and Technology),2021,21(04):047.[doi:10.3969/j.issn.1672-1292.2021.02.008]

备注/Memo

备注/Memo:
收稿日期:2021-03-08.
基金项目:国家自然科学基金项目(61603194).
通讯作者:刘怀,博士,副教授,研究方向:数字图像处理、实时控制系统. E-mail:liuhuai@njnu.edu.cn
更新日期/Last Update: 2021-12-15