参考文献/References:
[1]GOLDBERG D,NICHOLS D,OKI B M,et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM,1992,35(12):61-70.
[2]RESNICK P,VARIAN H R. Recommender systems[J]. Communications of the ACM,1997,40(3):56-58.
[3]LE Q H,VU S L,LE T X. A state-of-the-art survey on context-aware recommender systems and applications[J]. International Journal of Knowledge and Systems Science,2021,12(3):1-20.
[4]HE C,PARRA D,VERBERT K. Interactive recommender systems:A survey of the state of the art and future research challenges and opportunities[J]. Expert Systems with Applications,2016,56:9-27.
[5]CEN Y K,ZHANG J W,ZOU X,et al. Controllable multi-interest framework for recommendation[C]//The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York,NY,USA,2020.
[6]TOLLON F. Designed to seduce:epistemically retrograde ideation and youtube's recommender system[J]. International Journal of Technoethics,2021,12(2):60-71.
[7]MEDEL D,GONZÁLEZ-GONZÁLEZ C S,ACIAR S V. Social relations and methods in recommender systems:A systematic review[J]. International Journal of Interactive Multimedia and Artificial Intelligence,2022,7(4):7.
[8]DU C,GAO Z,YUAN S,et al. Exploration in online advertising systems with deep uncertainty-aware learning[C]//Proceedings of the 27th ACM SIGKDD Conference Discovery and Data Mining. New York,NY,USA,2021.
[9]ZANGERLE E,BAUER C. Evaluating recommender systems:survey and framework[J]. ACM Computing Surveys,2023,55(8):1-38.
[10]HERLOCKER J L,KONSTAN J A,BORCHERS A,et al. An algorithmic framework for performing collaborative filtering[J]. ACM SIGIR Forum,2017,51(2):227-234.
[11]AFSAR M M,CRUMP T,FAR B H. Reinforcement learning based recommender systems:a survey[J]. ACM Computing Surveys,2023,55(7):1-38.
[12]JIN R M,LI D,GAO J,et al. Towards a better understanding of linear models for recommendation[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York,NY,USA:Association for Computing Mechinery,2021.
[13]ZHANG Z,ZHANG Y,REN Y. Employing neighborhood reduction for alleviating sparsity and cold start problems in user-based collaborative filtering[J]. Information Retrieval Journal,2020,23:449-72.
[14]WANG R,JIANG Y,LOU J. Attention-based dynamic user preference modeling and nonlinear feature interaction learning for collaborative filtering recommendation[J]. Applied Soft Computing,2021,110:107652.
[15]RAMEZANI M,TAB F A,ABDOLLAHPOURI A,et al. A new generalized collaborative filtering approach on sparse data by extracting high confidence relations between users[J]. Information Sciences,2021,570:323-41.
[16]PAPADAKIS H,PAPAGRIGORIOU A,PANAGIOTAKIS C,et al. Collaborative filtering recommender systems taxonomy[J]. Knowledge and Information Systems,2022,64(1):35-74.
[17]SUN H,PENG Y,CHEN J,et al. A new similarity measure based on adjusted euclidean distance for memory-based collaborative filtering[J]. J Softw,2011,6(6):993-1000.
[18]KHOJAMLI H,RAZMARA J. Survey of similarity functions on neighborhood-based collaborative filtering[J]. Expert Systems with Applications,2021,185:115482.
[19]BAG S,KUMAR S K,TIWARI M K. An efficient recommendation generation using relevant Jaccard similarity[J]. Information Sciences,2019,483:53-64.
[20]MARGARIS D,VASSILAKIS C. Improving collaborative filtering's rating prediction coverage in sparse datasets by exploiting the ‘friend of a friend'concept[J]. International Journal of Big Data Intelligence,2020,7(1):47-57.
[21]SUN X,ZHANG L. Multi-order nearest neighbor prediction for recommendation systems[J]. Digital Signal Processing,2022,127:103540.
[22]RAMEZANI M,MORADI P,AKHLAGHIAN F. A pattern mining approach to enhance the accuracy of collaborative filtering in sparse data domains[J]. Physica a Statistical Mechanics & Its Applications,2014,408:72-84.
[23]KOOHI H,KIANI K. A new method to find neighbor users that improves the performance of collaborative filtering[J]. Expert Systems with Applications,2017,83:30-39.
[24]孙晓寒,张莉. 基于评分区域子空间的协同过滤推荐算法[J]. 计算机科学,2022,49(7):50-56.
[25]MORADI P,AHMADIAN S. A reliability-based recommendation method to improve trust-aware recommender systems[J]. Expert Systems with Applications,2015,42(21):7386-98.
[26]GUO G,ZHANG J,YORKE-SMITH N. A Novel Evidence-Based Bayesian Similarity Measure for Recommender Systems[J]. ACM Transactions on the Web,2016,10(2):1-30.
[27]GUO G,ZHANG J,THALMANN D,et al. ETAF:An extended trust antecedents framework for trust prediction[C]//2014 IEEE Interational Conference on Advances in Social Networks Analysis and Mining. Beijing,China:IEEE,2014.
[28]MASSA P,SOUREN K,SALVETTI M,et al. Trustlet,Open Research on Trust Metrics[J]. Scalable Computing Practice Experience,2008,9(4):31-44.
[29]SALEEM F,ILTAF N,AFZAL H,et al. Using trust in collaborative filtering for recommendations[C]//IEEE 28th International Conference on Enabling Technologies:Infrastructure for Collaborative Enterprises. Kyoto,Japan,2007.
[30]RAHIM A,DURRANI M Y,GILLANI S A,et al. An efficient recommender system algorithm using trust data[J]. The Journal of Supercomputing,2022,78(3):3184-204.
[31]YUAN W W,GUAN D H,LEE Y K,et al. The small-world trust network[J]. Applied Intelligence,2011,35(3):399-410.
相似文献/References:
[1]李 慧,李存华,王 霞.一种新颖的个性化视频搜索排名算法[J].南京师范大学学报(工程技术版),2008,08(04):182.
L iH u,i L iCunhua,W ang X ia.A Novel Individualized V ideo Search Rank ing Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2008,08(03):182.
[2]贺 宇,史有群,陶 然,等.基于服装图像视觉特征的冷启动问题缓解[J].南京师范大学学报(工程技术版),2019,19(03):015.[doi:10.3969/j.issn.1672-1292.2019.03.003]
He Yu,Shi Youqun,Tao Ran,et al.Mitigation of Cold-Start Problem Based on Visual Features of Clothing Images[J].Journal of Nanjing Normal University(Engineering and Technology),2019,19(03):015.[doi:10.3969/j.issn.1672-1292.2019.03.003]
[3]吴佳炜,沈玲玲,钱 钢.融合项目聚类和时间权重的动态协同过滤算法[J].南京师范大学学报(工程技术版),2017,17(03):063.[doi:10.3969/j.issn.1672-1292.2017.03.010]
Wu Jiawei,Shen Lingling,Qian Gang.Dynamic Collaborative Filtering Algorithm FusingItem Clustering and Time Weight[J].Journal of Nanjing Normal University(Engineering and Technology),2017,17(03):063.[doi:10.3969/j.issn.1672-1292.2017.03.010]
[4]王俊淑,张国明,胡 斌.基于深度学习的推荐算法研究综述[J].南京师范大学学报(工程技术版),2018,18(04):033.[doi:10.3969/j.issn.1672-1292.2018.04.006]
Wang Junshu,Zhang Guoming,Hu Bin.A Survey of Deep Learning Based Recommendation Algorithms[J].Journal of Nanjing Normal University(Engineering and Technology),2018,18(03):033.[doi:10.3969/j.issn.1672-1292.2018.04.006]