[1]李馨雅,闵富红,相惟康,等.新型FitzHugh-Nagumo神经元电路动力学分析[J].南京师范大学学报(工程技术版),2023,23(04):001-9.[doi:10.3969/j.issn.1672-1292.2023.04.001]
 Li Xinya,Min Fuhong,Xiang Weikang,et al.Dynamical Analysis of a Novel FitzHugh-Nagumo Neuron Circuit[J].Journal of Nanjing Normal University(Engineering and Technology),2023,23(04):001-9.[doi:10.3969/j.issn.1672-1292.2023.04.001]
点击复制

新型FitzHugh-Nagumo神经元电路动力学分析
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
23卷
期数:
2023年04期
页码:
001-9
栏目:
电气工程
出版日期:
2023-12-15

文章信息/Info

Title:
Dynamical Analysis of a Novel FitzHugh-Nagumo Neuron Circuit
文章编号:
1672-1292(2023)04-0001-09
作者:
李馨雅闵富红相惟康曹 弋
(南京师范大学南瑞电气与自动化学院,江苏 南京 210023)
Author(s):
Li XinyaMin FuhongXiang WeikangCao Yi
(NARI School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China)
关键词:
FitzHugh-Nagumo神经元电路记忆元件超级多稳态峰放电
Keywords:
FitzHugh-Nagumo neuron circuitmem-elementsextreme multistabilityspiking firing
分类号:
O415.5
DOI:
10.3969/j.issn.1672-1292.2023.04.001
文献标志码:
A
摘要:
利用二次型荷控忆容器替代忆阻FitzHugh-Nagumo神经元电路中的电容,构造了一种基于两类记忆元件的新型FitzHugh-Nagumo神经元电路. 通过分岔图、Lyapunov指数谱、双参数图等分析手段,展开了电路的多种动力学行为分析. 随着忆容参数与初始条件在特定区间内的变化,电路能够表现出含有周期-混沌气泡的反单调性、峰放电行为以及参数-初值域与初值-初值域之间的对称超级多稳态等. 特别地,记忆元件初值调控的反单调性也进一步揭示了电路的多稳态即多种运动状态吸引子共存的现象. 此外,通过电路软件仿真,该多稳态行为的正确性得到了验证.
Abstract:
In this paper,a novel mem-elements based FitzHugh-Nagumo neuron circuit is proposed,which is constructed by replacing the capacitor in a memristive FitzHugh-Nagumo neuron circuit with a quadratic charge-controlled memcapacitor. By employing numerical simulation tools like bifurcation diagram,Lyapunov exponent spectrum,and two-parameter mapping,the proposed memristve FitzHugh-Nagumo neuron circuit can display multiple dynamical behaviors. With the change of memcapacitor parameters and initial conditions in a certain range,it behaves periodic and chaotic bubbles,spiking firing behaviors and symmetric multistability between parameter and initial value domain and initial value-initial value domain. In particular,antimonotonicity controlled by the initial value of the mem-elements further reveals multistable behaviors,that is,the coexistence of attractors with various motion states. Finally,the coexisting multiple attractors of the circuit are verified by PSIM circuit simulation,which proves the correctness of the numerical results.

参考文献/References:

[1]STRUKOV D B,SNIDER G S,STEWART D R,et al. The missing memristor found[J]. Nature,2008,453(7191):80-83.
[2]DI V M,PERSHIN Y V,CHUA L O. Circuit elements with memory:memristors,memcapacitors,and meminductors[J]. Proceedings of the IEEE,2009,97(10):1717-1724.
[3]LI Y,FANG P W,LIANG J,et al. Coexistence of analog memristive and memcapacitive effects in a Pt/NiOx/NiO/Pt structure[J]. Semiconductor Science and Technology,2022,37(5):055007.
[4]郑宏亮,闵富红,张雯,等. 双忆阻Shinriki振荡器超级多稳态重构及其电路实现[J]. 南京师范大学学报(工程技术版),2021,21(3):10-21.
[5]ZHANG S,LI C B,ZHENG J H,et al. Generating any number of diversified hidden attractors via memristor coupling[J]. IEEE Transactions on Circuits and Systems I:Regular Papers,2021,68(12):4945-4956.
[6]CHEN B,CHENG X X,BAO H,et al. Extreme multistability and its incremental integral reconstruction in a non-autonomous memcapacitive oscillator[J]. Mathematics,2022,10(5):754.
[7]吕晏旻,闵富红. 基于现场可编程逻辑门阵列的磁控忆阻电路对称动力学行为分析[J]. 物理学报,2019,68(13):49-60.
[8]CHEN C J,MIN F H,ZHANG Y Z,et al. Memristive electromagnetic induction effects on Hopfield neural network[J]. Nonlinear Dynamics,2021,106(3):2559-2576.
[9]LYAPUNOV N,ZHENG X D,YANG K,et al. A bifunctional memristor enables multiple neuromorphic computing applications[J]. Advanced Electronic Materials,2022,8(7):2101235.
[10]任宽,张珂嘉,秦溪子,等. 基于忆容器件的神经形态计算研究进展[J]. 物理学报,2021,70(7):21-38.
[11]PARK S O,JEONG H C,PARK J Y,et al. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing[J]. Nature Communications,2022,13(1):2888.
[12]SUN J R,JIANG M Q,ZHOU Q,et al. Memristive cluster based compact high-density nonvolatile memory design and application for image storage[J]. Micromachines,2022,13(6):844.
[13]CHENG Y Z,MIN F H,RUI Z,et al. Heterogeneous dual memristive circuit:multistability,symmetry,and FPGA implementation[J]. Chinese Physics B,2021,30(12):120502.
[14]王义波,闵富红,张雯,等. 忆阻FitzHugh-Nagumo神经元电路有限时间同步[J]. 南京师范大学学报(工程技术版),2020,20(2):7-14.
[15]SANTANA L,SILVA R M D,ALBUQUERQUE H A,et al. Transient dynamics and multistability in two electrically interacting FitzHugh-Nagumo neurons[J]. Chaos,2021,31(5):053107.
[16]ZHANG S,ZHENG J H,WANG X P,et al. A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability[J]. Chaos,Solitons and Fractals,2021,145:110761.
[17]DING D W,XIAO H,YANG Z L,et al. Coexisting multi-stability of Hopfield neural network based on coupled fractional-order locally active memristor and its application in image encryption[J]. Nonlinear dynamics,2022,108(4):4433-4458.
[18]NAGUMO J,ARIMOTO S,YOSHIZAWA S. An active pulse transmission line simulating nerve axon[J]. Proceedings of the IEEE,1962,50(10):2061-2070.
[19]CHEN M,QI J W,XU Q,et al. Quasi-period,periodic bursting and bifurcations in memristor-based FitzHugh-Nagumo circuit[J]. AEU—International Journal of Electronics and Communications,2019,110:152840.
[20]CHEN M,QI J W,WU H G,et al. Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh-Nagumo circuit[J]. Science China(Technological Sciences),2020,63(6):1035-1044.
[21]BAO H,LIU W B,CHEN M. Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit[J]. Nonlinear Dynamics,2019,96(3):1879-1894.
[22]WANG Y B,MIN F H,CHENG Y Z,et al. Dynamical analysis in dual-memristor-based FitzHugh-Nagumo circuit and its coupling finite-time synchronization[J]. The European Physical Journal Special Topics,2021,230(7/8):1751-1762.
[23]张秀芳,马军,徐莹,等. 光电管耦合FitzHugh-Nagumo神经元的同步[J]. 物理学报,2021,70(9):232-241.

备注/Memo

备注/Memo:
收稿日期:2023-02-03.
基金项目:国家自然科学基金项目(61971228).
通讯作者:闵富红,博士,教授,研究方向:非线性电路与系统. E-mail:minfuhong@njnu.edu.cn
更新日期/Last Update: 2023-12-15