[1]王占龙.小波技术对LMS算法的提高与分析[J].南京师范大学学报(工程技术版),2016,16(03):063.[doi:10.3969/j.issn.1672-1292.2016.03.010]
 Wang Zhanlong.The Improvement and Analysis of Wavelet Transform to LMS Algorithm[J].Journal of Nanjing Normal University(Engineering and Technology),2016,16(03):063.[doi:10.3969/j.issn.1672-1292.2016.03.010]
点击复制

小波技术对LMS算法的提高与分析
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
16卷
期数:
2016年03期
页码:
063
栏目:
计算机工程
出版日期:
2016-09-30

文章信息/Info

Title:
The Improvement and Analysis of Wavelet Transform to LMS Algorithm
文章编号:
1672-1292(2016)03-0063-06
作者:
王占龙
中国电子科技集团公司第二十研究所,陕西 西安 715608
Author(s):
Wang Zhanlong
The 20th Institution of Chinese Electronical Technology Company,Xi’an 715608,China
关键词:
小波变换信号处理稳态失调误差变步长LMS算法
Keywords:
wavelet transformsignal processingsteady-state misadjustment errorvariable step-size LMS algorithm
分类号:
TN911.7
DOI:
10.3969/j.issn.1672-1292.2016.03.010
文献标志码:
A
摘要:
变步长LMS(Least Mean Square)算法在同时兼顾快速收敛与降低稳态失调误差的问题上做出了很多改进,但仍有较大的提升空间. 本文利用小波技术对变步长LMS算法提出改进. 小波技术具有数学“显微镜”功能,步长因子的变化速度可以通过拉伸窗口来实时调整. 本文将失调误差与收敛速度之间的比值做为小波窗口调整参数,根据两者之间的相对变化实时调整步长因子的变化速度,可实时准确地调整收敛速度,更好地兼顾快速收敛与降低稳态失调误差问题. 仿真证明本文提出的算法比现有技术具有更高的收敛速度和更低的稳态失调误差.
Abstract:
Although Variable Step-Size LMS algorithm has made some perfection in the compromise between the quick convergence and low steady-state misadjustment error,there will be a large space of improvement. The wavelet transformation of LMS algorithm is presented. Because the technology of wavelet has the function of “mathematics’s microscope”,the variable speed of step-size is adjusted by pulling the wavelet’s window. The steady-state misadjustment error to the convergence speed ratio is regarded as the window’s parameter. So the variable speed of step-size is adjusted timely by the relative variation of the two elements,then the convergence speed is adjusted timely and precisely the compromise between the quick convergence and low steady-state misadjustment error is better solved. The simulations verify that the wavelet transformation of LMS algorithm possesses better convergence speed and lower steady-state misadjustment error.

参考文献/References:

[1] SIMON H. 自适应滤波器原理[M]. 4版. 郑宝玉,译. 北京:电子工业出版社,2010:206-212.
SIMON H. Adaptive filter theory[M]. 4th ed. ZHENG B Y,translated. Beijing:Electronic Industry Press,2010:206-212. (in Chinese)
[2] HUANG B Y,XIAO Y G,SUN J W,et al. A variable step-size FXLMS algorithm for narrowband active noise control[J]. IEEE transactions on audio,speech and language processing,2013,21(2):301-312.
[3] 张贤达. 现代信号处理[M]. 2版. 北京:清华大学出版社,2002:188-206.
ZHANG X D. Modern signal processing[M]. 2nd ed. Beijing:Tsinghua University Press,2002:188-206. (in Chinese)
[4] HARSHA I K R,BEHROUZ F B. Fast LMS/Newton algorithm for stereophonic acoustic echo cancelation[J]. IEEE transactions on signal processing,2009,57(8):2 919-2 930.
[5] 罗小东,贾振红,王强. 一种新的变步长LMS自适应滤波算法[J]. 电子学报,2006,34(6):1 123-1 126.
LUO X D,JIA Z H,WANG Q. A new variable step size LMS adaptivefiltering algorithm[J]. Acta electronica sinica,2006,34(6):1 123-1 126. (in Chinese)
[6] HWANG J K,LI Y P. Variable step-size LMS algorithm with a gradient-based weighted average[J]. IEEE signal processing letters,2009,16(12):1 043-1 046.
[7] MAYYAS K. A variable step-size selective partial update LMS algorithm[J]. Digital signal processing,2013,23(1):75-85.
[8] HUANG H C,LEE J H. A new variable step-size NLMS algorithm and its performance analysis[J]. IEEE transactions on signal processing,2012,60(4):2 055-2 060.
[9] KWONG R H,JOHNSTON E W. A variable step size LMS algorithm[J]. IEEE transactions on signal processing,1992,40(7):1 633-1 642.
[10] ABOULNAST T,MAYYAS K. A robust variable step-size LMS-type algorithm:analysis and simulations[J]. IEEE transactions on signal processing,1997,45(3):631-639.
[11] XU D J,YIN B,WANG W,et al. Variable tap-length LMS algorithm based on adaptive parameters for TDL structure adaption[J]. IEEE signal processing letters,2014,21(7):809-813.
[12] 田福庆,罗荣,李克玉,等. 基于改进的双曲正切函数变步长LMS算法[J]. 系统工程与电子技术,2012,34(9):1 758-1 763.
TIAN F Q,LUO R,LI K Y,et al. New variable step-size LMS algorithm based on modified hyperbolic tangent function[J]. Systems engineering and electronics,2012,34(9):1 758-1 763. (in Chinese)
[13] CHOI Y S,HOOMAN S M. Simultaneous transmission and reception:algorithm,design and system level performance[J]. IEEE transactions on wireless communications,2013,12(12):5 992-6 010.
[14] BERSHAD N J,EWEDA E,BERMUDEZ J C M. Stochastic analysis of the LMS and NLMS algorithms for cyclostationary white Gaussian inputs[J]. IEEE transactions on signal processing,2014,62(9):2 238-2 249.

相似文献/References:

[1]单剑锋,翟 波.基于小波神经网络的无线电引信目标识别新方法[J].南京师范大学学报(工程技术版),2010,10(02):084.
 Shan Jianfeng,Zhai Bo.New Radio Fuze Target Recognition Based on Wavelet Neural Network[J].Journal of Nanjing Normal University(Engineering and Technology),2010,10(03):084.
[2]侯敬宏,黄树红,申弢,等.基于小波分析的透平机械振动故障特征定量识别研究[J].南京师范大学学报(工程技术版),2002,02(02):026.
 Hou Jinghong,Huang Shuhong,Shen Tao,et al.Wavelet-based Quantitative Analysis of Vibration Signal of Turbine Machines[J].Journal of Nanjing Normal University(Engineering and Technology),2002,02(03):026.
[3]张晗博,殷 奕,殷奎喜.基于小波变换的非平稳信号分析与处理[J].南京师范大学学报(工程技术版),2014,14(01):063.
 Zhang Hanbo,Yin Yi,Yin Kuixi.Non-Stationary Signals Analysis and Processing Based on Wavelet Transform[J].Journal of Nanjing Normal University(Engineering and Technology),2014,14(03):063.
[4]李 莹,朱文艳,袁 飞,等.基于形态学和平均梯度的小波图像融合算法[J].南京师范大学学报(工程技术版),2013,13(04):076.
 Li Ying,Zhu Wenyan,Yuan Fei,et al.Wavelet Image Fusion Algorithm Based on Morphology and Average Grads[J].Journal of Nanjing Normal University(Engineering and Technology),2013,13(03):076.
[5]王刻奇,杨 智,许清媛.膈肌肌电信号中心电干扰去除技术的一种方法[J].南京师范大学学报(工程技术版),2016,16(04):022.[doi:10.3969/j.issn.1672-1292.2016.04.004]
 Wang Keqi,Yang Zhi,Xu Qingyuan.A Method to Remove ECG Disturb in EMGdi Signal[J].Journal of Nanjing Normal University(Engineering and Technology),2016,16(03):022.[doi:10.3969/j.issn.1672-1292.2016.04.004]

备注/Memo

备注/Memo:
收稿日期:2015-12-16. 
通讯联系人:王占龙,工程师,研究方向:信息与信号处理. E-mail:wzl975113@126.com
更新日期/Last Update: 2016-09-30