[1]赵 佳,沈 周,周智恺,等.基于扩展卡尔曼滤波的无人直升机姿态解算[J].南京师范大学学报(工程技术版),2018,(04):009.[doi:10.3969/j.issn.1672-1292.2018.04.002]
 Zhao Jia,Shen Zhou,Zhou Zhikai,et al.Research on Attitude Algorithm of Unmanned HelicopterBased on Extended Kalman Filter[J].Journal of Nanjing Normal University(Engineering and Technology),2018,(04):009.[doi:10.3969/j.issn.1672-1292.2018.04.002]
点击复制

基于扩展卡尔曼滤波的无人直升机姿态解算
分享到:

南京师范大学学报(工程技术版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年04期
页码:
009
栏目:
电气与电子工程
出版日期:
2018-12-30

文章信息/Info

Title:
Research on Attitude Algorithm of Unmanned HelicopterBased on Extended Kalman Filter
文章编号:
1672-1292(2018)04-0009-04
作者:
赵 佳1沈 周2周智恺1冀 明1丁树庆3张 军3
(1.南京模拟技术研究所,江苏 南京 210016)(2.南京师范大学南瑞电气与自动化学院,江苏 南京 210023)(3.南京特种设备安全监督检验研究院,江苏 南京 210019)
Author(s):
Zhao Jia1Shen Zhou2Zhou Zhikai1Ji Ming1Ding Shuqing3Zhang Jun3
(1.Nanjing Research Institute On Simulation Technique,Nanjing 210016,China)(2.School of NARI Electrical and Automation,Nanjing Normal University,Nanjing 210023,China)(3.Nanjing Special Equipment Safety Supervision and Inspection Research Institute,Nanjing 210019,China)
关键词:
扩展卡尔曼滤波姿态解算无人直升机
Keywords:
extended Kalman filter(EKF)attitude algorithmunmanned helicopter
分类号:
V249
DOI:
10.3969/j.issn.1672-1292.2018.04.002
文献标志码:
A
摘要:
针对某型无人直升机飞行过程中振动较大,姿态难以精确获取的问题,采用扩展卡尔曼滤波技术进行解算. 该方法以惯性测量单元的角速度和加速度的比力作为输入,并通过振动数据的融合,实时获取姿态信息,有效降低了无人直升机振动对姿态精度的影响. 仿真和实际飞行验证了该方法的有效性.
Abstract:
Based on extended Kalman filter(EKF)technology,an attitude algorithm is derived for the unmanned helicopter with high vibration and the difficulty of obtaining attitude precisely. The angular rates of gyroscopes and the accelerations of accelerometers are feed into EKF,which instantaneously compute the attitude information. With the modeling of EKF,the algorithm efficiently reduces the influences of vibration. The performance is evaluated by simulation and actual flight experiments.

参考文献/References:

[1] 吴希明. 高速直升机发展现状、趋势与对策[J]. 南京航空航天大学学报,2015,47(2):173-179.
WU X M. Current state,development trend and countermeasure for high-speed rotorcraft[J]. Journal of Nanjing university of aeronautic & astronautics,2015,47(2):173-179.(in Chinese)
[2]AZZAM A,WANG X H. Quad rotor arial robot dynamic modeling and configuration stabilization[C]//The 2nd International Asia Conference on Informatics in Control,Automation and Robotics. Wuhan,2010.
[3]LARA D,SANCHEZ A,LOZANO R. Real-time embeded control sysytem for VTOL aircraft:application to stabilize a quad-rotor helicopter[C]//The 45th IEEE Conference on Decision & Control. Munich,2006.
[4]秦永元. 惯性导航[M]. 2版. 北京:科学出版社,2014.
QIN Y Y. Inertial Navigation[M]. 2nd ed. Beijing:Science Press,2014.(in Chinese)
[5]刘建业,曾庆化,赵伟. 导航系统理论与应用[M]. 西安:西北工业大学出版社,2010.
LIU J Y,ZENG Q H,ZHAO W. Theory and application of navigation system[M]. Xi’an:Northwestern Polytechnical University Press,2010.(in Chinese)
[6]孙罡. 低成本微小型无人机惯性组合导航技术研究[D]. 南京:南京理工大学,2014.
SUN G. Research on inertial integrated navigation technology for low-cost mini unmanned aerial vehicle[D]. Nanjing:Nanjing University of Science & Technology,2014.(in Chinese)
[7]申星. 面向小型无人直升机的SINS/GPS组合导航系统研究[D]. 杭州:浙江大学,2012.
SHEN X. Research on SINS/GPS navigation for small-sized unmanned helicopter[D]. Hangzhou:Zhejiang University,2012.(in Chinese)
[8]LI W,WANG J L. Effective adaptive Kalman filter for MEMS-IMU/magnetometers interated attitude and heading reference system[J]. The journal of navigation,2012,1(1):1-15.
[9]KUMAR N S,JANN T. Estimation of attitude from a low-cost miniaturized in ertial platform using Kalman filter-base sensor fusion algorithm[J]. Sadhana,2004,29(2):217-235.
[10]CORDOVA A J,RODRIGUEZ C H,VIVAS E V. Extended Kalman Filter tuning in attitude estimation from inertial and magnetic field measurenments[C]//Proceedings of the 6th International Conference on Electrical Engineering,Computing Science and Automatic Control. Mexico,2009.
[11]HALL J K,KNOEBEL N B,MCLAIN T W. Quaternion attitude estimation for miniature air vehicles using a multiplicative Extended Kalman Filter[C]//Proceedings of the IEEE/ION Position,Location and Navigation Symposium. Monterey,2008.
[12]付梦印,邓志红,闫莉萍. Kalman滤波理论及其在导航系统中的应用[M]. 北京:科学出版社,2010.
FU M Y,DENG Z H,YAN L P. Kalman filtering theory and application in navigation system[M]. Beijing:Science Press,2010.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2018-09-07.
基金项目:国家高科技研究发展计划(863计划)课题(2014AA09A511).
通讯联系人:赵佳,工程师,博士,研究方向:无人直升机导航与控制. E-mail:zhaojia0824@163.com
更新日期/Last Update: 2018-12-30